Research Article
BibTex RIS Cite

Çoruh Nehri Havzası’nda Bulunan Veliköy Alt Havzası’nın Yüzey Erozyon Riskinin Belirlenmesi ve Haritalandırılması

Year 2018, Volume: 4 Issue: 2, 210 - 220, 02.07.2018
https://doi.org/10.21324/dacd.415081

Abstract



Yeryüzündeki bitki örtüsü, farklı zamansal ve mekânsal ölçeklerde işlevler
gören dünya ekosistemlerinin önemli bir parçasıdır. Diğer birçok işlevinin yanı
sıra, arazi kullanımı olarak orman ekosistemleri toprak yüzeyini şiddetli
yağmurların erosif etkisinden önemli ölçüde koruyarak toprak erozyonu ve su
kirliliğini önemli ölçüde azaltırlar. Bu çalışmanın amacı; Türkiye’nin
kuzeydoğusunda yer alan Çoruh Nehri Havzası’nda zengin orman kaynaklarına sahip
bir alt havza olan Veliköy’ün (417 km2) yüzey erozyon riskini RUSLE
yöntemiyle belirlemektir. Bu amaçla, RUSLE denklemini oluşturan bitki örtüsü
(C), yağış (R), toprak erodibilitesi (K), yamaç uzunluğu/eğim (LS) ve koruma
faaliyeti (P) faktörleri birbirleriyle çarpılarak yüzey erozyonuyla kaybolan
toprak miktarı tahmin edilmiştir. Çalışmanın sonunda, bu alt havzadan yüzey
erozyonuyla kaybolan toprak miktarı yaklaşık 3.9 t ha-1 yıl-1
bulunmuştur. Üretilen toprak kaybı haritaları Veliköy alt havzasının %8.2’sinin
erozyon potansiyeli açısından yüksek ve çok yüksek riskli alanlar sınıfına
girdiğini göstermiştir. Dolayısıyla, gerçekleştirilecek erozyon kontrol
faaliyetleri öncelikli olarak bu alanlarda yoğunlaştırılmalıdır.    

References

  • Arekhi S., Niazi Y., Kalteh A.M., (2012), Soil erosion and sediment yield modeling using RS and GIS techniques: a case study, Iran, Arabian Journal of Geosciences, 5, 285-296.
  • Bouyoucos G.J., (1962), Hydrometer method improved for making particle size analyses of soils, Agronomy Journal, 54(5):464-465.
  • Boyce R.C., (1975), Sediment routing with sediment delivery ratios. Present and prospective technology for predicting sediment yields and sources, US Department of Agriculture Publication ARS-S-40, p 61-65.
  • Buttafuoco G., Conforti M., Aucelli P.P.C., Robustelli G., Scarciglia F., (2012) Assessing spatial uncertainty in mapping soil erodibility factor using geostatistical stochastic simulation, Environ Earth Science, 66, 1111–1125.
  • CEC, (2006), Proposal for a directive of the European Parliament and of the Council establishing a framework for the protection of soil and amending Directive 2004/35/EC, Brussels https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3 A52006PC0232, [Accessed 7 April 2018].
  • Cerdan O., Govers G., Le Bissonnais Y., Van Oost K., Poesen J., Saby N., (2010), Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data, Geomorphology, 122 (1-2), 167-177.
  • Chen T., Niu R., Li P., Zhang L., Du B., (2011), Regional soil erosion risk mapping using RUSLE, GIS, and remote sensing: a case study in Miyun Watershed, North Chine, Environmental Earth Science, 63, 533-541.
  • CMTUEP, (2005), Çölleşme ile mücadele Türkiye ulusal eylem planı. Çölleşme ile Mücadele Ulusal Koordinasyon Birimi, Çevre ve Orman Bakanlığı Yayınları No: 250, Ankara, 124ss.
  • CMUSEP, (2015), Çölleşme ile mücadele ulusal strateji ve eylem planı (2015-2023), Orman ve Su İşleri Bakanlığı, Çölleşme ve Erozyonla Mücadele Genel Müdürlüğü, Ankara, 148ss.
  • CNHRP-EIAR, (2017), Coruh Nehri havzası Rehabilitasyon Projesi, Erozyon Izleme Ara Raporu, Piramid Fotogrametrik Hizmetler, February 2017, Ankara.
  • Colak A.H., Kırca S., Rotherham I.D., İnce A., (2010), Restoration and Rehabilitation of Deforested and Degraded Forest Landscape in Turkey, Ministry of Environment and Forestry General Directorate of Afforestation and Erosion Control, Ankara, p 571.
  • Demirci A., Karaburun A., (2012), Estimation of soil erosion using RUSLE in a GIS framework: a case study in the Buyukcekmece Lake watershed, northwest Turkey, Environmental Earth Sciences, 66(3), 903-913.
  • Dinc M., (2017), Determination and Modelling of Above Ground and Below Ground Carbon Contents in Forest, Grassland and Agriculture Areas with Association by Using Satallite Images in Some Sub-Basins of Artvin, Erzurum and Bayburt, Dissertation, Artvin Coruh University, Artvin, Turkey, p 232.
  • DPT, (2001) VIII. Five-years Development Plan, Government Planning Organization, Publish No 2555, Ankara, p 147 (in Turkish).
  • Duman A., (2017), Determination and Modelling of Soil Properties of Degraded Forest and Grassland Areas in Some Micro Catchments of Artvin, Erzurum and Bayburt Using Satellite Images, Dissertation, Artvin Coruh University, Artvin, Turkey, p 156.
  • Gundogan R., Akay A.E., Okatan A., Yuksel A., Oguzkan E.A., (2010), Land suitability evaluation for reducing soil losses in Kahramanmaras, Turkey, Fresenius Environmental Bulletin, 19(11a), 2678-2689.
  • IASS, (2015), Soil atlas, Institute for Advanced Sustainability Studies, Potsdam, p 68. http://www.iass-potsdam.de/sites/default/files/ files/grounding_the_post-2015_development_agenda.pdf, [Accessed 7 April 2018].
  • Kantarcı D., (1993) The most important environmental problem of Turkey, In: Proceedings of I. Forestry Council, 1-5 November 1993, Ankara, pp 465-475.
  • MEF, (2006), Turkey’s National Action Program on Combating Desertification, Republic of Turkey Ministry of Environment and Forestry, Ankara, p 89.
  • MFAL, (2014), “Great Soil Groups” Digital Database from Republic of Turkey Ministry of Food, Agriculture and Livestock.
  • Moore I.D., Burch G.J., (1986) Physical basis of the length-slope factor in the Universal Soil Loss Equation, Soil Science Society of America Journal, 50, 1294-1289.
  • Napoli M., Cecchi S., Orlandini S., Mugnai G., Zanchi C.A., (2016), Simulation of field-measured soil loss in Mediterranean hilly areas (Chianti, Italy) with RUSLE, Catena, 145, 246-256.
  • Ozcan, A.U., Erpul G., Basaran, M., Erdogan H.E., (2008), Use of USLE/GIS technology integrated with geostatistics to assess soil erosion risk in different land uses of Indagi Mountain Pass-Cankırı, Turkey, Environmental Geology, 53(8), 1731-1741.
  • Özveren E., Tekin S.N., (2014), The integrated participatory watershed rehabilitation approach-best practices from Turkey, In: Planet@Risk, 2(4), Special Issue on One Health. 217- 223, Davos: Global Risk Forum GRF Davos.
  • Renard K.G., Foster G.R., (1998), R factor-rainfall/runoff erosivity. In: Galetevic JR (ed) Guidelines for the use of the revised universal soil loss equation (RUSLE) version 1.06 on mined lands, construction sites and reclaimed lands, The Office of Technology Transfer Western Regional Coordinating Center Office of Surface Mining, Denver, CO, p 23-64.
  • Renard K.G., Foster G.R., Weesies G.A., McCool D.K., Yoder D.C., (1997), Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE), Agricultural Handbook, vol 703. US Department of Agriculture, Washington, DC.
  • Torri D., Poesen J., Borselli L., (1997), Predictability and uncertainty of the soil erodibility factor using a global dataset, Catena, 31(1), 1-22.
  • Torri D., Poesen J., Borselli L., (2002), Corrigendum to “Predictability and uncertainty of the soil erodibility factor using a global dataset”[Catena 31 (1997) 1–22] and to “Erratum to Predictability and uncertainty of the soil erodibility factor using a global dataset”[Catena 32 (1998) 307–308], Catena, 46(4), 309-310.
  • Tufekcioglu M., Isenhart T.M., Schultz R.C., Bear D.A., Kovar J.L., Russell J.R., (2012), Stream bank erosion as a source of sediment and phosphorus in grazed pastures of the Rathbun lake watershed in southern Iowa, United States, Journal of Soil Water Conser 67(6), 545-555.
  • Tufekcioglu M., Yavuz M., (2016), Estimating surface soil erosion losses and mapping erosion risk for Yusufeli micro-catchment (Artvin), Artvin Coruh University Journal of Forestry Faculty, 17(2), 188-199 (in Turkish).
  • Vatandaslar C., Yavuz M., (2017), Modeling cover management factor of RUSLE using very high-resolution satellite imagery in a semiarid watershed, Environmental Earth Sciences, 76:65.
  • Walkley A., Blake I.A., (1934), An examination of the Degtjareff method for the determining soil organic matter and a proposed modification of the chromic acid titration method, Soil Sciences, 37, 29-38.
  • Wischmeier W.H., Smith D.D., (1978), Predicting Rainfall Erosion Losses: A Guide to Conservation Planning, Science, US Department of Agriculture Handbook, No. 537, Washington DC.

Assessing and Mapping Erosion Risk for Velikoy Sub-watershed within Coruh River Basin in Turkey

Year 2018, Volume: 4 Issue: 2, 210 - 220, 02.07.2018
https://doi.org/10.21324/dacd.415081

Abstract

Vegetation on earth surface is the integral part of the world ecosystems in functioning for varying spatial and temporal scales. Along with other benefits, land-use as a forest can dramatically reduce the soil erosion and water pollution by protecting the soil surface from erosive effects of rainfall. The objective of this study was to determine rill/interrill (surface) erosion risk by using the RUSLE equation for Velikoy sub-watershed (417 km2) which has rich forest-resources within the Coruh River Basin located at northeastern Turkey. Land use and cover (C factor), rainfall and runoff (R factor), soil erodibility (K factor), slope length and steepness (LS factor), and management support practice (P factor) were identified as the sub-factors for the RUSLE equation and were multiplied to estimate soil loss by rill/interrill erosion. Results showed that the mean surface soil erosion from the sub-watershed was around 3.9 t ha-1 yr-1. Of the total study area, 8.2% was estimated as the areas of high and very high risk for the potential surface soil erosion that also indicates prioritization for the implementation of the erosion conservation measures.




References

  • Arekhi S., Niazi Y., Kalteh A.M., (2012), Soil erosion and sediment yield modeling using RS and GIS techniques: a case study, Iran, Arabian Journal of Geosciences, 5, 285-296.
  • Bouyoucos G.J., (1962), Hydrometer method improved for making particle size analyses of soils, Agronomy Journal, 54(5):464-465.
  • Boyce R.C., (1975), Sediment routing with sediment delivery ratios. Present and prospective technology for predicting sediment yields and sources, US Department of Agriculture Publication ARS-S-40, p 61-65.
  • Buttafuoco G., Conforti M., Aucelli P.P.C., Robustelli G., Scarciglia F., (2012) Assessing spatial uncertainty in mapping soil erodibility factor using geostatistical stochastic simulation, Environ Earth Science, 66, 1111–1125.
  • CEC, (2006), Proposal for a directive of the European Parliament and of the Council establishing a framework for the protection of soil and amending Directive 2004/35/EC, Brussels https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3 A52006PC0232, [Accessed 7 April 2018].
  • Cerdan O., Govers G., Le Bissonnais Y., Van Oost K., Poesen J., Saby N., (2010), Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data, Geomorphology, 122 (1-2), 167-177.
  • Chen T., Niu R., Li P., Zhang L., Du B., (2011), Regional soil erosion risk mapping using RUSLE, GIS, and remote sensing: a case study in Miyun Watershed, North Chine, Environmental Earth Science, 63, 533-541.
  • CMTUEP, (2005), Çölleşme ile mücadele Türkiye ulusal eylem planı. Çölleşme ile Mücadele Ulusal Koordinasyon Birimi, Çevre ve Orman Bakanlığı Yayınları No: 250, Ankara, 124ss.
  • CMUSEP, (2015), Çölleşme ile mücadele ulusal strateji ve eylem planı (2015-2023), Orman ve Su İşleri Bakanlığı, Çölleşme ve Erozyonla Mücadele Genel Müdürlüğü, Ankara, 148ss.
  • CNHRP-EIAR, (2017), Coruh Nehri havzası Rehabilitasyon Projesi, Erozyon Izleme Ara Raporu, Piramid Fotogrametrik Hizmetler, February 2017, Ankara.
  • Colak A.H., Kırca S., Rotherham I.D., İnce A., (2010), Restoration and Rehabilitation of Deforested and Degraded Forest Landscape in Turkey, Ministry of Environment and Forestry General Directorate of Afforestation and Erosion Control, Ankara, p 571.
  • Demirci A., Karaburun A., (2012), Estimation of soil erosion using RUSLE in a GIS framework: a case study in the Buyukcekmece Lake watershed, northwest Turkey, Environmental Earth Sciences, 66(3), 903-913.
  • Dinc M., (2017), Determination and Modelling of Above Ground and Below Ground Carbon Contents in Forest, Grassland and Agriculture Areas with Association by Using Satallite Images in Some Sub-Basins of Artvin, Erzurum and Bayburt, Dissertation, Artvin Coruh University, Artvin, Turkey, p 232.
  • DPT, (2001) VIII. Five-years Development Plan, Government Planning Organization, Publish No 2555, Ankara, p 147 (in Turkish).
  • Duman A., (2017), Determination and Modelling of Soil Properties of Degraded Forest and Grassland Areas in Some Micro Catchments of Artvin, Erzurum and Bayburt Using Satellite Images, Dissertation, Artvin Coruh University, Artvin, Turkey, p 156.
  • Gundogan R., Akay A.E., Okatan A., Yuksel A., Oguzkan E.A., (2010), Land suitability evaluation for reducing soil losses in Kahramanmaras, Turkey, Fresenius Environmental Bulletin, 19(11a), 2678-2689.
  • IASS, (2015), Soil atlas, Institute for Advanced Sustainability Studies, Potsdam, p 68. http://www.iass-potsdam.de/sites/default/files/ files/grounding_the_post-2015_development_agenda.pdf, [Accessed 7 April 2018].
  • Kantarcı D., (1993) The most important environmental problem of Turkey, In: Proceedings of I. Forestry Council, 1-5 November 1993, Ankara, pp 465-475.
  • MEF, (2006), Turkey’s National Action Program on Combating Desertification, Republic of Turkey Ministry of Environment and Forestry, Ankara, p 89.
  • MFAL, (2014), “Great Soil Groups” Digital Database from Republic of Turkey Ministry of Food, Agriculture and Livestock.
  • Moore I.D., Burch G.J., (1986) Physical basis of the length-slope factor in the Universal Soil Loss Equation, Soil Science Society of America Journal, 50, 1294-1289.
  • Napoli M., Cecchi S., Orlandini S., Mugnai G., Zanchi C.A., (2016), Simulation of field-measured soil loss in Mediterranean hilly areas (Chianti, Italy) with RUSLE, Catena, 145, 246-256.
  • Ozcan, A.U., Erpul G., Basaran, M., Erdogan H.E., (2008), Use of USLE/GIS technology integrated with geostatistics to assess soil erosion risk in different land uses of Indagi Mountain Pass-Cankırı, Turkey, Environmental Geology, 53(8), 1731-1741.
  • Özveren E., Tekin S.N., (2014), The integrated participatory watershed rehabilitation approach-best practices from Turkey, In: Planet@Risk, 2(4), Special Issue on One Health. 217- 223, Davos: Global Risk Forum GRF Davos.
  • Renard K.G., Foster G.R., (1998), R factor-rainfall/runoff erosivity. In: Galetevic JR (ed) Guidelines for the use of the revised universal soil loss equation (RUSLE) version 1.06 on mined lands, construction sites and reclaimed lands, The Office of Technology Transfer Western Regional Coordinating Center Office of Surface Mining, Denver, CO, p 23-64.
  • Renard K.G., Foster G.R., Weesies G.A., McCool D.K., Yoder D.C., (1997), Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE), Agricultural Handbook, vol 703. US Department of Agriculture, Washington, DC.
  • Torri D., Poesen J., Borselli L., (1997), Predictability and uncertainty of the soil erodibility factor using a global dataset, Catena, 31(1), 1-22.
  • Torri D., Poesen J., Borselli L., (2002), Corrigendum to “Predictability and uncertainty of the soil erodibility factor using a global dataset”[Catena 31 (1997) 1–22] and to “Erratum to Predictability and uncertainty of the soil erodibility factor using a global dataset”[Catena 32 (1998) 307–308], Catena, 46(4), 309-310.
  • Tufekcioglu M., Isenhart T.M., Schultz R.C., Bear D.A., Kovar J.L., Russell J.R., (2012), Stream bank erosion as a source of sediment and phosphorus in grazed pastures of the Rathbun lake watershed in southern Iowa, United States, Journal of Soil Water Conser 67(6), 545-555.
  • Tufekcioglu M., Yavuz M., (2016), Estimating surface soil erosion losses and mapping erosion risk for Yusufeli micro-catchment (Artvin), Artvin Coruh University Journal of Forestry Faculty, 17(2), 188-199 (in Turkish).
  • Vatandaslar C., Yavuz M., (2017), Modeling cover management factor of RUSLE using very high-resolution satellite imagery in a semiarid watershed, Environmental Earth Sciences, 76:65.
  • Walkley A., Blake I.A., (1934), An examination of the Degtjareff method for the determining soil organic matter and a proposed modification of the chromic acid titration method, Soil Sciences, 37, 29-38.
  • Wischmeier W.H., Smith D.D., (1978), Predicting Rainfall Erosion Losses: A Guide to Conservation Planning, Science, US Department of Agriculture Handbook, No. 537, Washington DC.
There are 33 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Mustafa Tufekcioglu

Mehmet Yavuz

Can Vatandaslar

Musa Dinc

Ahmet Duman

Aydin Tufekcioglu

Publication Date July 2, 2018
Submission Date April 13, 2018
Acceptance Date June 21, 2018
Published in Issue Year 2018Volume: 4 Issue: 2

Cite

APA Tufekcioglu, M., Yavuz, M., Vatandaslar, C., Dinc, M., et al. (2018). Assessing and Mapping Erosion Risk for Velikoy Sub-watershed within Coruh River Basin in Turkey. Doğal Afetler Ve Çevre Dergisi, 4(2), 210-220. https://doi.org/10.21324/dacd.415081
AMA Tufekcioglu M, Yavuz M, Vatandaslar C, Dinc M, Duman A, Tufekcioglu A. Assessing and Mapping Erosion Risk for Velikoy Sub-watershed within Coruh River Basin in Turkey. J Nat Haz Environ. July 2018;4(2):210-220. doi:10.21324/dacd.415081
Chicago Tufekcioglu, Mustafa, Mehmet Yavuz, Can Vatandaslar, Musa Dinc, Ahmet Duman, and Aydin Tufekcioglu. “Assessing and Mapping Erosion Risk for Velikoy Sub-Watershed Within Coruh River Basin in Turkey”. Doğal Afetler Ve Çevre Dergisi 4, no. 2 (July 2018): 210-20. https://doi.org/10.21324/dacd.415081.
EndNote Tufekcioglu M, Yavuz M, Vatandaslar C, Dinc M, Duman A, Tufekcioglu A (July 1, 2018) Assessing and Mapping Erosion Risk for Velikoy Sub-watershed within Coruh River Basin in Turkey. Doğal Afetler ve Çevre Dergisi 4 2 210–220.
IEEE M. Tufekcioglu, M. Yavuz, C. Vatandaslar, M. Dinc, A. Duman, and A. Tufekcioglu, “Assessing and Mapping Erosion Risk for Velikoy Sub-watershed within Coruh River Basin in Turkey”, J Nat Haz Environ, vol. 4, no. 2, pp. 210–220, 2018, doi: 10.21324/dacd.415081.
ISNAD Tufekcioglu, Mustafa et al. “Assessing and Mapping Erosion Risk for Velikoy Sub-Watershed Within Coruh River Basin in Turkey”. Doğal Afetler ve Çevre Dergisi 4/2 (July 2018), 210-220. https://doi.org/10.21324/dacd.415081.
JAMA Tufekcioglu M, Yavuz M, Vatandaslar C, Dinc M, Duman A, Tufekcioglu A. Assessing and Mapping Erosion Risk for Velikoy Sub-watershed within Coruh River Basin in Turkey. J Nat Haz Environ. 2018;4:210–220.
MLA Tufekcioglu, Mustafa et al. “Assessing and Mapping Erosion Risk for Velikoy Sub-Watershed Within Coruh River Basin in Turkey”. Doğal Afetler Ve Çevre Dergisi, vol. 4, no. 2, 2018, pp. 210-2, doi:10.21324/dacd.415081.
Vancouver Tufekcioglu M, Yavuz M, Vatandaslar C, Dinc M, Duman A, Tufekcioglu A. Assessing and Mapping Erosion Risk for Velikoy Sub-watershed within Coruh River Basin in Turkey. J Nat Haz Environ. 2018;4(2):210-2.