Research Article
BibTex RIS Cite

In situ natural radioactivity and radiological hazard assessments of granite gneiss outcrops in parts of the Southwestern Basement Complex of Nigeria

Year 2019, Volume: 5 Issue: 2, 214 - 223, 31.07.2019
https://doi.org/10.21324/dacd.475998

Abstract



Radioactive
emission (gamma ray) emanating from rock materials constitutes threats to humans
and their environment. Hence, the natural radioactivity and radiological hazard
indices of some
granite gneiss outcrops
with their residual soils from two different localities within the Southwestern
Basement Complex of Nigeria were assessed using Gamma-ray spectrometry. The
study aimed at determining the natural radiation levels of granite gneissic
rocks and associated radiological threats to people living in the study area
from gamma ray exposure. Data were collected along six geophysical traverses of
200 m each with station spacing of 5 m using the portable hand-held Gamma-ray
Spectrometer. The results of weighted mean values of the elemental and activity
concentrations for 40K, 238U, and 232Th are
2.00 ± 1.43%, 3.13 ± 0.90 ppm, 12.32 ± 4.99 ppm and 629.28 ± 447.29, 38.58 ±
11.02, 49.96 ± 20.23




















 respectively. The obtained mean concentration
ratios of 1.32 for U/Th and 2.14 for Th/U were higher than 0.26 and lower than
3.5 global standard ratios respectively. The increase in activity
concentrations and concentration ratio may have suggested the enrichment of
radioactive minerals in the granite gneissic rocks. The annual outdoor and
indoor effective doses of gamma ray exposure for people living in the study
area were below the world permissible standard of 1


,
thus, the area is radiologically safe
.
However, increase in

estimated mean of AGDE and ELCR;
525.620

 and 1.273

 above the world permissible standards of 300

 and

 respectively
does not translate to significant radiological threats. Therefore, control
measure by constant monitoring of the radioactivity levels of the area and
rocks should be practiced.




References

  • Adams J.A.S., (1962), Nuclear radiation in geophysics, Israel H., Krebs A., (Ed.), Springer-Verlag Berlin Heidelberg, 460p.
  • Ademila O., (2018), Radiometric Impact Assessment around Two Quarry Sites, Benin-Owo Expressway, Southwestern Nigeria, International Journal of Engineering and Geosciences, 3(1), 20-35.
  • Ademila O., Akingboye A.S., Ojamomi A.I., (2018), Radiometric survey in geological mapping of parts of Basement Complex area of Nigeria, Vietnam Journal of Earth Sciences, 40(3), 288-298.
  • Akkurt I., Oruncak B., Gunoglu K., (2010), Radioactivity and dose rates in commercially-used marble from Afyonkarahisar-Turkey, International Journal of Physical Sciences, 5(2), 170–173.
  • Beretka J., Mathew P.J., (1985), Natural radioactivity of Australia building materials, industrial wastes and by-products, Health Physics, 48, 87-95.
  • Çetin B., (2016), Determination of natural radioactivity concentrations in surface soils in the Yesilirmak River in Amasya, Turkey, Acta Physica Polonica A, 130(1), 320-321.
  • Chandrasekaran A., Ravisankar R., Senthilkumar G., Thillaivelavan K., Dhinakaran B., Vijayagopal P., Bramha S.N., Venkatraman B., (2014), Spatial distribution and lifetime cancer risk due to gamma radioactivity in Yelagiri Hills, Tamilnadu, India, Egyptian Journal of Basic and Applied Sciences, 1, 38-48.
  • Cinar H., Altundas S., Çelik N., Maden N., (2017), In situ gamma ray measurements for deciphering of radioactivity level in the Sarihan pluton area of northeastern Turkey, Arabian Journal of Geosciences, 10(19), https://doi.org/10.1007/s12517-017-3225-4.
  • European Commission (EC), (1999), Radiological Protection Principles concerning the Natural Radioactivity of Building Materials, Radiation Protection 112, https://ec.europa.eu/energy/sites/ener/files/documents/112.pdf, 16p.
  • IAEA (2003), Radiation protection and the management of radioactive waste in the oil and gas industry, International Atomic Energy Agency, 173 p.
  • ICRP, (1977), Recommendations of the ICRP, International Commission on Radiological Protection (ICRP), ICRP Pub. 26, Pergamon Press, New York, 87 p.
  • ICRP, (1990), Recommendations of the ICRP, International Commission on Radiological Protection (ICRP), ICRP Pub. 60, Pergamon Press, New York.
  • Kearey P., Brooks M., Hill I., (2002), An Introduction to Geophysical Exploration, 3rd ed., Oxford: Blackwell Science, 262 p.
  • Mamont-Ciesla K., Gwiazdowski B., Biernacka M., Zak A., (1982), Radioactivity of building materials in Poland, Vohra G., Pillai K.C., Sadavisan S., (Ed.), Natural radiation environment, New York: Halsted Press, p. 551.
  • Mishra U.C., Sadasivan S., (1971), Natural radioactivity levels in Indian soils, Journal of Scientific and Industrial Research, 30(2), 59-62.
  • Obaje N.G., (2009), Geology and Mineral Resources of Nigeria, Springer-Verlag Berlin Heidelberg, 221 p.
  • Radiation information network, (2004), Radioactivity, Idaho State University, U.S.A.
  • Ramasamy V., Suresh G., Meenakshisundaram V., Gajendran V., (2009), Evaluation of natural radionuclide content in river sediments and excess lifetime cancer risk due to gamma radioactivity, Research Journal of Environmental and Earth Sciences, 1(1), 6-10.
  • Taskin H., Karavus M., Ay P., Topuzoglu A., Hindiroglu S., Karahan G., (2009), Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey, Journal of Environmental of Radioactivity, 100(1), 49-53.
  • Tufail M., Akhar N., Jaried S.A., Hamid T., (2007), Natural radiation hazard in building bricks fabrication from soils of two districts of Pakistan, Journal of Radiological Protection, 27, 481-492.
  • Tzortzis M., Tsertos H., Christofides C., Christodoulides G., (2003), Gamma radiation measurement and dose rates in commercially-used natural tiling rocks (granites), Journal of Environmental Radioactivity, 70(1), 223-235.
  • Tzortzis M., Tsertos H., (2004), Determination of uranium, thorium and potassium elemental concentration in surface soils in Cyprus, Journal of Environmental radioactivity, 77, 325-338.
  • UNSCEAR, (1988), Sources, effects and risks of ionizing radiation, United Nations Scientific Committee on Effect of Atomic Radiation (UNSCEAR), United Nations, New York, 647 p.
  • UNSCEAR, (1993), Sources and effects of ionizing radiation, United Nations Scientific Committee on Effect of Atomic Radiation (UNSCEAR), United Nations, New York, 920 p.
  • UNSCEAR, (2000), Exposure from natural radiation source, United Nations Scientific Committee on Effect of Atomic Radiation (UNSCEAR), Report to general assembly, Annex B, United Nations, New York, vol. 1-2, 76 p.
  • UNSCEAR, (2008), Sources and effects of ionizing radiation, United Nations Scientific Committee on Effect of Atomic Radiation (UNSCEAR), Report to the general assembly with scientific annexes. United Nations, New York, vol. 2, 219 p.
  • Uyanık N.A., Uyanık O., Gür F., Aydın İ., (2013), Natural radioactivity of bricks and brick material in the Salihli-Turgutlu area of Turkey, Environmental Earth Sciences, 68(2), 499-506.
  • Woakes M., Rahaman M.A., Ajibade A.C., (1987), Some Metallogenetic Features of the Nigerian Basement, Journal of African Earth Sciences, 6 (5), 655-664.
  • Xinwei L., Lingqing W., Xiaodan J., (2006), Radiometric analysis of Chinese commercial granites, Journal of Radioanalytical and Nuclear Chemistry, 267 (3), 669-673.
  • Yu K.N., Guan Z.J., Stokes M.J., Young E.C.M., (1992), The assessment of the natural dose committed to the Hong Kong people, Journal of Environmental Radioactivity, 17(1), 31-48.

Nijerya'nın Güneybatı Temel Kompleks Bölgesinde Yüzeye Çıkan Granit Kayaların Doğal Radyoaktivite ve Radyolojik Tehlikelerinin Yerinde Değerlendirilmesi

Year 2019, Volume: 5 Issue: 2, 214 - 223, 31.07.2019
https://doi.org/10.21324/dacd.475998

Abstract



Kaya
materyallerinden kaynaklanan radyoaktif emisyon (gama ışını) insanlara ve
çevresine tehdit oluşturur. Bu nedenle, Nijerya'nın Güneybatı Temel
Kompleksi'nde iki farklı bölgeden yüzeye çıkan granit kayalar ile bunların
kalıntısı olan toprakların doğal radyoaktivite ve radyolojik tehlike endeksleri
Gamma-ray spektrofotometre kullanılarak değerlendirilmiştir. Bu çalışmada, granit
yapıdaki kayaların doğal radyasyon düzeylerinin ve bağlantılı radyolojik
tehlikelerin çalışma alanında yaşayan ve gama ışınına maruz kalan insanlar
üzerindeki etkilerinin belirlenmesi amaçlanmıştır. Veriler, taşınabilir
Gamma-ray Spektrometresi kullanılarak her biri 200 m’lik altı jeofizik travers
boyunca 5 m’lik istasyon aralığı ile toplanmıştır.
40K, 238U
ve 232Th için temel ve aktivite konsantrasyonlarının ağırlıklı
ortalama değerlerinin sonuçları sırasıyla %2.00 ± 1.43, 3.13 ± 0.90 ppm, 12.32
± 4.99 ppm ve 629.28 ± 447.29, 38.58 ± 11.02, 49.96 ± 20.23




















 dir. Elde edilen U/Th (1.32) ve Th/U (2.14) ortalama
konsantrasyon oranları, sırasıyla, genel standart oranları olan 0.26’dan yüksek
ve 3.5’tan düşüktür.
Aktivite
konsantrasyonları ve konsantrasyon oranlarındaki artış, yüzeye çıkan granit
kayalarda radyoaktif minerallerin zenginleştiği anlamına gelebilir.
Çalışma alanında yaşayan insanlar için gamma ışını
maruziyetinde uygulanan yıllık dış ve iç etkili dozları dünyanın izin verilen
1

 standardının altında
olduğundan, alan radyolojik olarak güvenlidir.
Bununla birlikte, AGDE ve ELCR'nin tahmini ortalamaları olan 525.620

 ve 1.273 x10-3
değerlerindeki artışın, izin verilen 300


 ve 0.29 x10-3
standart miktarların üzerinde olması da ciddi radyolojik tehditler anlamına
gelmemelidir.
Bu
nedenle, alanın ve kayaların radyoaktivite seviyesinin sürekli izlendiği
kontrol önlemleri tatbik edilmelidir.




References

  • Adams J.A.S., (1962), Nuclear radiation in geophysics, Israel H., Krebs A., (Ed.), Springer-Verlag Berlin Heidelberg, 460p.
  • Ademila O., (2018), Radiometric Impact Assessment around Two Quarry Sites, Benin-Owo Expressway, Southwestern Nigeria, International Journal of Engineering and Geosciences, 3(1), 20-35.
  • Ademila O., Akingboye A.S., Ojamomi A.I., (2018), Radiometric survey in geological mapping of parts of Basement Complex area of Nigeria, Vietnam Journal of Earth Sciences, 40(3), 288-298.
  • Akkurt I., Oruncak B., Gunoglu K., (2010), Radioactivity and dose rates in commercially-used marble from Afyonkarahisar-Turkey, International Journal of Physical Sciences, 5(2), 170–173.
  • Beretka J., Mathew P.J., (1985), Natural radioactivity of Australia building materials, industrial wastes and by-products, Health Physics, 48, 87-95.
  • Çetin B., (2016), Determination of natural radioactivity concentrations in surface soils in the Yesilirmak River in Amasya, Turkey, Acta Physica Polonica A, 130(1), 320-321.
  • Chandrasekaran A., Ravisankar R., Senthilkumar G., Thillaivelavan K., Dhinakaran B., Vijayagopal P., Bramha S.N., Venkatraman B., (2014), Spatial distribution and lifetime cancer risk due to gamma radioactivity in Yelagiri Hills, Tamilnadu, India, Egyptian Journal of Basic and Applied Sciences, 1, 38-48.
  • Cinar H., Altundas S., Çelik N., Maden N., (2017), In situ gamma ray measurements for deciphering of radioactivity level in the Sarihan pluton area of northeastern Turkey, Arabian Journal of Geosciences, 10(19), https://doi.org/10.1007/s12517-017-3225-4.
  • European Commission (EC), (1999), Radiological Protection Principles concerning the Natural Radioactivity of Building Materials, Radiation Protection 112, https://ec.europa.eu/energy/sites/ener/files/documents/112.pdf, 16p.
  • IAEA (2003), Radiation protection and the management of radioactive waste in the oil and gas industry, International Atomic Energy Agency, 173 p.
  • ICRP, (1977), Recommendations of the ICRP, International Commission on Radiological Protection (ICRP), ICRP Pub. 26, Pergamon Press, New York, 87 p.
  • ICRP, (1990), Recommendations of the ICRP, International Commission on Radiological Protection (ICRP), ICRP Pub. 60, Pergamon Press, New York.
  • Kearey P., Brooks M., Hill I., (2002), An Introduction to Geophysical Exploration, 3rd ed., Oxford: Blackwell Science, 262 p.
  • Mamont-Ciesla K., Gwiazdowski B., Biernacka M., Zak A., (1982), Radioactivity of building materials in Poland, Vohra G., Pillai K.C., Sadavisan S., (Ed.), Natural radiation environment, New York: Halsted Press, p. 551.
  • Mishra U.C., Sadasivan S., (1971), Natural radioactivity levels in Indian soils, Journal of Scientific and Industrial Research, 30(2), 59-62.
  • Obaje N.G., (2009), Geology and Mineral Resources of Nigeria, Springer-Verlag Berlin Heidelberg, 221 p.
  • Radiation information network, (2004), Radioactivity, Idaho State University, U.S.A.
  • Ramasamy V., Suresh G., Meenakshisundaram V., Gajendran V., (2009), Evaluation of natural radionuclide content in river sediments and excess lifetime cancer risk due to gamma radioactivity, Research Journal of Environmental and Earth Sciences, 1(1), 6-10.
  • Taskin H., Karavus M., Ay P., Topuzoglu A., Hindiroglu S., Karahan G., (2009), Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey, Journal of Environmental of Radioactivity, 100(1), 49-53.
  • Tufail M., Akhar N., Jaried S.A., Hamid T., (2007), Natural radiation hazard in building bricks fabrication from soils of two districts of Pakistan, Journal of Radiological Protection, 27, 481-492.
  • Tzortzis M., Tsertos H., Christofides C., Christodoulides G., (2003), Gamma radiation measurement and dose rates in commercially-used natural tiling rocks (granites), Journal of Environmental Radioactivity, 70(1), 223-235.
  • Tzortzis M., Tsertos H., (2004), Determination of uranium, thorium and potassium elemental concentration in surface soils in Cyprus, Journal of Environmental radioactivity, 77, 325-338.
  • UNSCEAR, (1988), Sources, effects and risks of ionizing radiation, United Nations Scientific Committee on Effect of Atomic Radiation (UNSCEAR), United Nations, New York, 647 p.
  • UNSCEAR, (1993), Sources and effects of ionizing radiation, United Nations Scientific Committee on Effect of Atomic Radiation (UNSCEAR), United Nations, New York, 920 p.
  • UNSCEAR, (2000), Exposure from natural radiation source, United Nations Scientific Committee on Effect of Atomic Radiation (UNSCEAR), Report to general assembly, Annex B, United Nations, New York, vol. 1-2, 76 p.
  • UNSCEAR, (2008), Sources and effects of ionizing radiation, United Nations Scientific Committee on Effect of Atomic Radiation (UNSCEAR), Report to the general assembly with scientific annexes. United Nations, New York, vol. 2, 219 p.
  • Uyanık N.A., Uyanık O., Gür F., Aydın İ., (2013), Natural radioactivity of bricks and brick material in the Salihli-Turgutlu area of Turkey, Environmental Earth Sciences, 68(2), 499-506.
  • Woakes M., Rahaman M.A., Ajibade A.C., (1987), Some Metallogenetic Features of the Nigerian Basement, Journal of African Earth Sciences, 6 (5), 655-664.
  • Xinwei L., Lingqing W., Xiaodan J., (2006), Radiometric analysis of Chinese commercial granites, Journal of Radioanalytical and Nuclear Chemistry, 267 (3), 669-673.
  • Yu K.N., Guan Z.J., Stokes M.J., Young E.C.M., (1992), The assessment of the natural dose committed to the Hong Kong people, Journal of Environmental Radioactivity, 17(1), 31-48.
There are 30 citations in total.

Details

Primary Language English
Subjects Geological Sciences and Engineering (Other)
Journal Section Research Articles
Authors

Adedibu Sunny Akingboye 0000-0003-2195-6098

Omowumi Ademila 0000-0001-5177-1110

Publication Date July 31, 2019
Submission Date October 30, 2018
Acceptance Date March 18, 2019
Published in Issue Year 2019Volume: 5 Issue: 2

Cite

APA Akingboye, A. S., & Ademila, O. (2019). In situ natural radioactivity and radiological hazard assessments of granite gneiss outcrops in parts of the Southwestern Basement Complex of Nigeria. Doğal Afetler Ve Çevre Dergisi, 5(2), 214-223. https://doi.org/10.21324/dacd.475998
AMA Akingboye AS, Ademila O. In situ natural radioactivity and radiological hazard assessments of granite gneiss outcrops in parts of the Southwestern Basement Complex of Nigeria. J Nat Haz Environ. July 2019;5(2):214-223. doi:10.21324/dacd.475998
Chicago Akingboye, Adedibu Sunny, and Omowumi Ademila. “In Situ Natural Radioactivity and Radiological Hazard Assessments of Granite Gneiss Outcrops in Parts of the Southwestern Basement Complex of Nigeria”. Doğal Afetler Ve Çevre Dergisi 5, no. 2 (July 2019): 214-23. https://doi.org/10.21324/dacd.475998.
EndNote Akingboye AS, Ademila O (July 1, 2019) In situ natural radioactivity and radiological hazard assessments of granite gneiss outcrops in parts of the Southwestern Basement Complex of Nigeria. Doğal Afetler ve Çevre Dergisi 5 2 214–223.
IEEE A. S. Akingboye and O. Ademila, “In situ natural radioactivity and radiological hazard assessments of granite gneiss outcrops in parts of the Southwestern Basement Complex of Nigeria”, J Nat Haz Environ, vol. 5, no. 2, pp. 214–223, 2019, doi: 10.21324/dacd.475998.
ISNAD Akingboye, Adedibu Sunny - Ademila, Omowumi. “In Situ Natural Radioactivity and Radiological Hazard Assessments of Granite Gneiss Outcrops in Parts of the Southwestern Basement Complex of Nigeria”. Doğal Afetler ve Çevre Dergisi 5/2 (July 2019), 214-223. https://doi.org/10.21324/dacd.475998.
JAMA Akingboye AS, Ademila O. In situ natural radioactivity and radiological hazard assessments of granite gneiss outcrops in parts of the Southwestern Basement Complex of Nigeria. J Nat Haz Environ. 2019;5:214–223.
MLA Akingboye, Adedibu Sunny and Omowumi Ademila. “In Situ Natural Radioactivity and Radiological Hazard Assessments of Granite Gneiss Outcrops in Parts of the Southwestern Basement Complex of Nigeria”. Doğal Afetler Ve Çevre Dergisi, vol. 5, no. 2, 2019, pp. 214-23, doi:10.21324/dacd.475998.
Vancouver Akingboye AS, Ademila O. In situ natural radioactivity and radiological hazard assessments of granite gneiss outcrops in parts of the Southwestern Basement Complex of Nigeria. J Nat Haz Environ. 2019;5(2):214-23.