Research Article
BibTex RIS Cite

Comparison of Direct Runoff Hydrographs of Two Ungauged Sub-Basins Using Instantaneous Unit Hydrograph Approach

Year 2019, Volume: 5 Issue: 2, 327 - 334, 31.07.2019
https://doi.org/10.21324/dacd.516396

Abstract



The aim of this study is to estimate the direct runoff hydrographs at the
outlets of two ungauged sub-basins which have similar drainage areas and
elongation ratios. For the analysis, two neighboring sub-basins of Araç Creek
located in the Western Black Sea Basin were selected. Drainage networks of the
sub-basins were created via ArcGIS and some morphometric parameters were
calculated. Unit hydrographs for two sub-basins were estimated using Nash’s
instantaneous unit hydrograph method. In order to compare the hydrographs of two
sub-basins under similar conditions, hydrologic analysis was performed using
the same curve number and precipitation model in HEC-HMS hydrologic model.
According to the model results, peak discharges in sub-basin 1 and sub-basin 2
were found to be 18.71 and 27.83 m3/s, respectively, and the peak discharge
of sub-basin 2 was found to be 49% higher than that of sub-basin 1. Furthermore,
time to peak of the sub-basin 2 was estimated as 5 hours while it was 7 hours
for the sub-basin 1. According to the calculated hydrographs, it was concluded
that sub-basin 2 was more susceptible to flash floods than sub-basin 1. The adopted
method also enables prioritization of the sub-basins according to the flash
flood potential. During design stage of hydraulic structures located on rivers
without flow measurements, hydrograph and peak flow discharges can be estimated
by using this method where properties of the sub-basins can directly be used.




References

  • Agirre U., Goni M., Lopez J.J., Gimena F.N., (2005), Application of a unit hydrograph based on subwatershed division and comparison with Nash’s instantaneous unit hydrograph, Catena, 64(2-3), 321-332.
  • Akay H., Baduna Koçyiğit M., (2018), Ölçüm alınmayan bir havzada yağış akış ilişkisinin bir hidrolojik model yardımıyla belirlenmesi:Akçay Havzası örneği, Proceedings 3th Uluslararası Mesleki ve Teknik Bilimler Kongresi’nin içinde (Emek M., Alimgereyev Z., Ed.), Gaziantep, Türkiye, ss.2154-2159.
  • Akay H., Baduna Koçyiğit M., Yanmaz A.M., (2018), Effect of using multiple stream gauging stations on calibration of hydrologic parameters and estimation of hydrograph of ungauged neighboring basin, Arabian Journal of Geosciences, 11(11): 282.
  • Ayalew T.B., Krajewski W.F., (2017), Effect of river network geometry on flood frequency: a tale of two watersheds in Iowa, Journal of Hydrologic Engineering, 22(8), 06017004, doi: 10.1061/(ASCE)HE.1943-5584.0001544.
  • Baduna Koçyiğit M., Akay H., Yanmaz A.M., (2017), Effect of watershed partitioning on hydrologic parameters and estimation of hydrograph of an ungauged basin: a case study in Gokirmak and Kocanaz, Turkey, Arabian Journal of Geosciences, 10(15): 331.
  • Baduna Koçyiğit M., Akay H., (2018), Estimation of potential flash flood risk in a basin using morphometric parameters: A case study of Akçay Basin, Journal of the Faculty of Engineering and Architecture of Gazi University, 33(4), 1321-1332.
  • Beven K.J., (2000), Uniqueness of place and process representations in hydrological modeling, Hydrology and Earth System Sciences, 4(2), 203–213.
  • Gabr S., El-Bastawesy M., (2015), Estimating the flash flood quantitative parameters affecting the oil-fields infrastructure in Ras Sudr, Sinai, Egypt, during the January 2010 event, The Egyptian Journal of Remote Sensing and Space Sciences, 18(2), 137-149.
  • Horton R.E., (1945), Erosional development of streams and their drainage basins-hydrophysical approach to quantitative morphology, Bulletin of the Geological Society of America, 56(3), 275–370.
  • Hosseini S.M., Mahjouri N., Riahi S., (2016), Development of a direct geomorphologic IUH model for daily runoff estimation in ungauged watersheds, Journal of Hydrologic Engineering, 21(6): 05016008, doi: 10.1061/(ASCE)HE.1943-5584.0001333.
  • Jain S.K., Singh R.D., Seth, S.M., (2000), Design flood estimation using GIS supported GIUH approach, Water Resources Management, 14(5), 369–376.
  • Khan S.I., Hong Y., Wang J., Yilmaz K.K., Gourley J.J., Adler R.F., Brakenridge G.R., Policelli F., Habib S., Irwin D., (2011), Satellite remote sensing and hydrologic modeling for flood inundation mapping in Lake Victoria Basin: implications for hydrologic prediction in ungauged basin, IEEE Transactions on Geoscience and Remote Sensing, 49(1), 85-95. Kumar R., Chatterjee C., Singh R.D., Lohani A.K., Kumar S., (2007), Runoff estimation for an ungauged catchment using geomorphological instantaneous unit hydrograph (GIUH) models, Hydrological Processes, 21(14), 1829-1840.
  • Nash J.E., (1957), The form of instantaneous unit hydrograph, International Association of Scientific Hydrology, 45, 114-121.
  • Nemes G., (2010), New asymptotic expansion for the gamma function, Archiv der Mathematik, 95(2), 161-169.
  • Piman T., Babel M.S., (2013), Prediction of rainfall-runoff in an ungauged basin: case study in the mountainous region of Northern Thailand, Journal of Hydrologic Engineering, 18(2), 285-296.
  • Post D.A., Jones J.A., Grant G.E., (1998), An improved methodology for predicting the daily hydrologic response of ungauged catchments, Environmental Modelling & Software, 13(3–4), 395–403.
  • Quan N.H., (2006), Rainfall-runoff modeling in the ungauged Can Le catchment, Saigon river basin, Doktora tezi, International Institute for Geo-Information Science and Earth Observation, Enschede, Netherlands.
  • Razavi T., Coulibaly P., (2013), Streamflow prediction in ungauged basins: review of regionalization methods, Journal of Hydrologic Engineering, 18(8), 958-975.
  • Reshma T., Reddy K.V., Prastap D., (2013), Simulation of event based runoff using HEC-HMS model for an experimental watershed, International Journal of Hydraulic Engineering, 2(2), 28-33.
  • Rodriguez-Iturbe I., Valdes J., (1979), The geomorphologic structure of hydrologic response, Water Resources Research, 15(6), 1409–1420.
  • Rosso R., (1984), Nash model relation to Horton order ratios, Water Resources Research, 20(7), 914–920.
  • Sahoo B., Chatterjee C., Raghuwanshi N.S., Singh R., Kumar R., (2006), Flood estimation by GIUH based Clark and Nash models, Journal of Hydrologic Engineering, 11(6), 515-525.
  • Singh S.K., (2015), Simple parametric instantaneous unit hydrograph, Journal of Irrigation and Drainage Engineering, 141(5), 04014066, doi: 10.1061/(ASCE)IR.1943-4774.0000830.
  • Sivapalan M., Takeuchi K., Franks S.W., Gupta V.K., Karambiri H., Lakshmi V., Liang X., McDonnell J.J., Mendiondo E.M., O’connell P.E., Oki T., Pomeroy J.W., Schertzer D., Uhlenbrook S., Zehe E., (2003), IAHS decade on predictions in ungauged basins (PUB), 2003–2012: Shaping an exciting future for the hydrological sciences, Hydrological Sciences Journal, 48(6), 857–880.
  • Strahler A.N. (1957), Quantitative analysis of watershed geomorphology, Transactions American Geophysical Union, 38(6), 913–920.
  • USACE, (2013), Hydrologic modeling system HEC-HMS user’s manual, US Army Corps of Engineers Hydrologic Engineering Center (USACE), https://www.hec.usace.army.mil/software/hec-hms/documentation/HEC-HMS_Users_Manual_4.0.pdf, [Erişim 11 Şubat 2019].
  • USDA, (1986), Urban hydrology for small watersheds, Technical Release 55 (TR-55) (Second ed.), Natural Resources Conservation Service, Conservation Engineering Division, 164ss.
  • Valdes J.B., Fiallo Y., Rodriguez-Iturbe I., (1979), A rainfall runoff analysis of the geomorphologic IUH, Water Resources Research, 15(6), 1421–1434.
  • Yadav M., Wagener T., Gupta H., (2007), Regionalization of constraints on expected watershed response behavior for improved predictions in ungauged basins, Advances in Water Resouurces, 30(2007), 1756-1774.
  • Youssef A.M., Pradhan B., Hassan A.M., (2011), Flash flood risk estimation along the St. Katherine road, Southern Sinai, Egypt using GIS bassed morphometry and satellite imagery, Environmental Earth Sciences, 62(3), 611-623.
  • Zhang Z., Wagener T., Reed P., Bhushan R., (2008), Reducing uncertainty in predictions in ungauged basins by combining hydrologic indices regionalization and multiobjective optimization, Water Resources Research, 44(12), W00B04: 1-13.

Akım Ölçümü Alınmayan İki Alt Havzanın Dolaysız Akış Hidrograflarının Anlık Birim Hidrograf Yaklaşımıyla Karşılaştırılması

Year 2019, Volume: 5 Issue: 2, 327 - 334, 31.07.2019
https://doi.org/10.21324/dacd.516396

Abstract



Bu
çalışmanın amacı akım ölçümü alınmayan, birbirine yakın drenaj alanına ve
uzunluk oranına sahip iki alt havzanın çıkış noktasında dolaysız akış
hidrograflarını tahmin etmektir. Bunun için Batı Karadeniz Havzası’nda yer alan
Araç Çayı’nın iki komşu alt havzası seçilmiştir. ArcGIS programı yardımıyla alt
havzaların drenaj ağı oluşturulmuş ve bazı morfometrik parametreleri
hesaplanmıştır. Nash anlık birim hidrograf yöntemiyle alt havzaların birim
hidrografı tahmin edilmiştir. Alt havzaların hidrograflarının eşit durumlarda
karşılaştırılabilmesi için aynı eğri numarası ve yağış modeli kullanılarak
HEC-HMS hidrolojik modeli yardımıyla analizleri yapılmıştır. Model sonuçlarına
göre alt havza 1 ve alt havza 2’de meydana gelen pik debiler sırasıyla 18.71 ve
27.83 m3/s olup alt havza 2 pik debisinin alt havza 1 pik debisinden
%49 daha fazla olduğu görülmüştür. Ayrıca, alt havza 2’de pik debiye gelme
süresi 5 saatken, alt havza 1’in pik debiye gelme süresi 7 saat olarak
hesaplanmıştır. Hesaplanan hidrograflara göre alt havza 2’nin alt havza 1’e
göre ani taşkına daha duyarlı olduğu sonucuna varılmıştır. İzlenen yöntem alt
havzaların anlık taşkın potansiyellerine göre önceliklendirilmesine de olanak
sağlar. Akım ölçümü olmayan akarsular üzerinde yapılması planlanan hidrolik
yapıların projelendirilmesi sırasında bu yöntem takip edilerek alt havzanın
kendi özelliklerini doğrudan kullanarak hidrograf ve pik debi tahmini
yapılabilir.




References

  • Agirre U., Goni M., Lopez J.J., Gimena F.N., (2005), Application of a unit hydrograph based on subwatershed division and comparison with Nash’s instantaneous unit hydrograph, Catena, 64(2-3), 321-332.
  • Akay H., Baduna Koçyiğit M., (2018), Ölçüm alınmayan bir havzada yağış akış ilişkisinin bir hidrolojik model yardımıyla belirlenmesi:Akçay Havzası örneği, Proceedings 3th Uluslararası Mesleki ve Teknik Bilimler Kongresi’nin içinde (Emek M., Alimgereyev Z., Ed.), Gaziantep, Türkiye, ss.2154-2159.
  • Akay H., Baduna Koçyiğit M., Yanmaz A.M., (2018), Effect of using multiple stream gauging stations on calibration of hydrologic parameters and estimation of hydrograph of ungauged neighboring basin, Arabian Journal of Geosciences, 11(11): 282.
  • Ayalew T.B., Krajewski W.F., (2017), Effect of river network geometry on flood frequency: a tale of two watersheds in Iowa, Journal of Hydrologic Engineering, 22(8), 06017004, doi: 10.1061/(ASCE)HE.1943-5584.0001544.
  • Baduna Koçyiğit M., Akay H., Yanmaz A.M., (2017), Effect of watershed partitioning on hydrologic parameters and estimation of hydrograph of an ungauged basin: a case study in Gokirmak and Kocanaz, Turkey, Arabian Journal of Geosciences, 10(15): 331.
  • Baduna Koçyiğit M., Akay H., (2018), Estimation of potential flash flood risk in a basin using morphometric parameters: A case study of Akçay Basin, Journal of the Faculty of Engineering and Architecture of Gazi University, 33(4), 1321-1332.
  • Beven K.J., (2000), Uniqueness of place and process representations in hydrological modeling, Hydrology and Earth System Sciences, 4(2), 203–213.
  • Gabr S., El-Bastawesy M., (2015), Estimating the flash flood quantitative parameters affecting the oil-fields infrastructure in Ras Sudr, Sinai, Egypt, during the January 2010 event, The Egyptian Journal of Remote Sensing and Space Sciences, 18(2), 137-149.
  • Horton R.E., (1945), Erosional development of streams and their drainage basins-hydrophysical approach to quantitative morphology, Bulletin of the Geological Society of America, 56(3), 275–370.
  • Hosseini S.M., Mahjouri N., Riahi S., (2016), Development of a direct geomorphologic IUH model for daily runoff estimation in ungauged watersheds, Journal of Hydrologic Engineering, 21(6): 05016008, doi: 10.1061/(ASCE)HE.1943-5584.0001333.
  • Jain S.K., Singh R.D., Seth, S.M., (2000), Design flood estimation using GIS supported GIUH approach, Water Resources Management, 14(5), 369–376.
  • Khan S.I., Hong Y., Wang J., Yilmaz K.K., Gourley J.J., Adler R.F., Brakenridge G.R., Policelli F., Habib S., Irwin D., (2011), Satellite remote sensing and hydrologic modeling for flood inundation mapping in Lake Victoria Basin: implications for hydrologic prediction in ungauged basin, IEEE Transactions on Geoscience and Remote Sensing, 49(1), 85-95. Kumar R., Chatterjee C., Singh R.D., Lohani A.K., Kumar S., (2007), Runoff estimation for an ungauged catchment using geomorphological instantaneous unit hydrograph (GIUH) models, Hydrological Processes, 21(14), 1829-1840.
  • Nash J.E., (1957), The form of instantaneous unit hydrograph, International Association of Scientific Hydrology, 45, 114-121.
  • Nemes G., (2010), New asymptotic expansion for the gamma function, Archiv der Mathematik, 95(2), 161-169.
  • Piman T., Babel M.S., (2013), Prediction of rainfall-runoff in an ungauged basin: case study in the mountainous region of Northern Thailand, Journal of Hydrologic Engineering, 18(2), 285-296.
  • Post D.A., Jones J.A., Grant G.E., (1998), An improved methodology for predicting the daily hydrologic response of ungauged catchments, Environmental Modelling & Software, 13(3–4), 395–403.
  • Quan N.H., (2006), Rainfall-runoff modeling in the ungauged Can Le catchment, Saigon river basin, Doktora tezi, International Institute for Geo-Information Science and Earth Observation, Enschede, Netherlands.
  • Razavi T., Coulibaly P., (2013), Streamflow prediction in ungauged basins: review of regionalization methods, Journal of Hydrologic Engineering, 18(8), 958-975.
  • Reshma T., Reddy K.V., Prastap D., (2013), Simulation of event based runoff using HEC-HMS model for an experimental watershed, International Journal of Hydraulic Engineering, 2(2), 28-33.
  • Rodriguez-Iturbe I., Valdes J., (1979), The geomorphologic structure of hydrologic response, Water Resources Research, 15(6), 1409–1420.
  • Rosso R., (1984), Nash model relation to Horton order ratios, Water Resources Research, 20(7), 914–920.
  • Sahoo B., Chatterjee C., Raghuwanshi N.S., Singh R., Kumar R., (2006), Flood estimation by GIUH based Clark and Nash models, Journal of Hydrologic Engineering, 11(6), 515-525.
  • Singh S.K., (2015), Simple parametric instantaneous unit hydrograph, Journal of Irrigation and Drainage Engineering, 141(5), 04014066, doi: 10.1061/(ASCE)IR.1943-4774.0000830.
  • Sivapalan M., Takeuchi K., Franks S.W., Gupta V.K., Karambiri H., Lakshmi V., Liang X., McDonnell J.J., Mendiondo E.M., O’connell P.E., Oki T., Pomeroy J.W., Schertzer D., Uhlenbrook S., Zehe E., (2003), IAHS decade on predictions in ungauged basins (PUB), 2003–2012: Shaping an exciting future for the hydrological sciences, Hydrological Sciences Journal, 48(6), 857–880.
  • Strahler A.N. (1957), Quantitative analysis of watershed geomorphology, Transactions American Geophysical Union, 38(6), 913–920.
  • USACE, (2013), Hydrologic modeling system HEC-HMS user’s manual, US Army Corps of Engineers Hydrologic Engineering Center (USACE), https://www.hec.usace.army.mil/software/hec-hms/documentation/HEC-HMS_Users_Manual_4.0.pdf, [Erişim 11 Şubat 2019].
  • USDA, (1986), Urban hydrology for small watersheds, Technical Release 55 (TR-55) (Second ed.), Natural Resources Conservation Service, Conservation Engineering Division, 164ss.
  • Valdes J.B., Fiallo Y., Rodriguez-Iturbe I., (1979), A rainfall runoff analysis of the geomorphologic IUH, Water Resources Research, 15(6), 1421–1434.
  • Yadav M., Wagener T., Gupta H., (2007), Regionalization of constraints on expected watershed response behavior for improved predictions in ungauged basins, Advances in Water Resouurces, 30(2007), 1756-1774.
  • Youssef A.M., Pradhan B., Hassan A.M., (2011), Flash flood risk estimation along the St. Katherine road, Southern Sinai, Egypt using GIS bassed morphometry and satellite imagery, Environmental Earth Sciences, 62(3), 611-623.
  • Zhang Z., Wagener T., Reed P., Bhushan R., (2008), Reducing uncertainty in predictions in ungauged basins by combining hydrologic indices regionalization and multiobjective optimization, Water Resources Research, 44(12), W00B04: 1-13.
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Hüseyin Akay 0000-0002-9714-4590

Müsteyde Baduna Koçyiğit 0000-0003-2338-4425

Publication Date July 31, 2019
Submission Date January 22, 2019
Acceptance Date March 8, 2019
Published in Issue Year 2019Volume: 5 Issue: 2

Cite

APA Akay, H., & Baduna Koçyiğit, M. (2019). Akım Ölçümü Alınmayan İki Alt Havzanın Dolaysız Akış Hidrograflarının Anlık Birim Hidrograf Yaklaşımıyla Karşılaştırılması. Doğal Afetler Ve Çevre Dergisi, 5(2), 327-334. https://doi.org/10.21324/dacd.516396
AMA Akay H, Baduna Koçyiğit M. Akım Ölçümü Alınmayan İki Alt Havzanın Dolaysız Akış Hidrograflarının Anlık Birim Hidrograf Yaklaşımıyla Karşılaştırılması. J Nat Haz Environ. July 2019;5(2):327-334. doi:10.21324/dacd.516396
Chicago Akay, Hüseyin, and Müsteyde Baduna Koçyiğit. “Akım Ölçümü Alınmayan İki Alt Havzanın Dolaysız Akış Hidrograflarının Anlık Birim Hidrograf Yaklaşımıyla Karşılaştırılması”. Doğal Afetler Ve Çevre Dergisi 5, no. 2 (July 2019): 327-34. https://doi.org/10.21324/dacd.516396.
EndNote Akay H, Baduna Koçyiğit M (July 1, 2019) Akım Ölçümü Alınmayan İki Alt Havzanın Dolaysız Akış Hidrograflarının Anlık Birim Hidrograf Yaklaşımıyla Karşılaştırılması. Doğal Afetler ve Çevre Dergisi 5 2 327–334.
IEEE H. Akay and M. Baduna Koçyiğit, “Akım Ölçümü Alınmayan İki Alt Havzanın Dolaysız Akış Hidrograflarının Anlık Birim Hidrograf Yaklaşımıyla Karşılaştırılması”, J Nat Haz Environ, vol. 5, no. 2, pp. 327–334, 2019, doi: 10.21324/dacd.516396.
ISNAD Akay, Hüseyin - Baduna Koçyiğit, Müsteyde. “Akım Ölçümü Alınmayan İki Alt Havzanın Dolaysız Akış Hidrograflarının Anlık Birim Hidrograf Yaklaşımıyla Karşılaştırılması”. Doğal Afetler ve Çevre Dergisi 5/2 (July 2019), 327-334. https://doi.org/10.21324/dacd.516396.
JAMA Akay H, Baduna Koçyiğit M. Akım Ölçümü Alınmayan İki Alt Havzanın Dolaysız Akış Hidrograflarının Anlık Birim Hidrograf Yaklaşımıyla Karşılaştırılması. J Nat Haz Environ. 2019;5:327–334.
MLA Akay, Hüseyin and Müsteyde Baduna Koçyiğit. “Akım Ölçümü Alınmayan İki Alt Havzanın Dolaysız Akış Hidrograflarının Anlık Birim Hidrograf Yaklaşımıyla Karşılaştırılması”. Doğal Afetler Ve Çevre Dergisi, vol. 5, no. 2, 2019, pp. 327-34, doi:10.21324/dacd.516396.
Vancouver Akay H, Baduna Koçyiğit M. Akım Ölçümü Alınmayan İki Alt Havzanın Dolaysız Akış Hidrograflarının Anlık Birim Hidrograf Yaklaşımıyla Karşılaştırılması. J Nat Haz Environ. 2019;5(2):327-34.