Research Article
BibTex RIS Cite

Baraj Rezervuarlarında Heyelanlardan Kaynaklanacak İtki Dalga Özelliklerinin Ampirik İlişkilerle Değerlendirilmesi: Borçka Barajı Örneği

Year 2020, Volume: 6 Issue: 2, 248 - 257, 01.07.2020
https://doi.org/10.21324/dacd.621377

Abstract

Bu çalışmada Borçka Baraj Rezervuarında baraj gövdesine 4 km uzaklıkta bulunan paleo-heyelan malzemesinin aktif hale gelmesi durumunda oluşacak itki dalgalarının çevresel etkilerinin ampirik ilişkiler kullanılarak belirlenmesi amaçlanmıştır. Çalışmada, heyelan malzemesine ait farklı kalınlık ve genişlik değerleri dikkate alınarak, 0.5 ile 1 milyon metreküp arasında değişen hacimlerde malzemenin rezervuara akması durumu için 3 farklı senaryo geliştirilmiştir. Heyelan kaynaklı dalganın rezervuarda her yöne dairesel olarak yayılacağı belirlenmiş, dalga özellikleri 3 boyutlu ampirik yaklaşımlarla değerlendirilmiştir. Farklı senaryolar için, dalga hızının 27.1 ile 27.7 m/s arasında değişeceği, en yüksek hız değeri için karşı kıyıya ulaşacak dalga yüksekliğinin 23 metre olacağı ve bu dalganın karşı kıyıda yamaç boyunca 42.3 metre yükseleceği hesaplanmıştır. En düşük dalga hızı değeri için ise dalga yüksekliği 18.5 m ve yamaç boyunca ilerleme yüksekliği ise 32.5 metre olacaktır. Baraja ait 4 metrelik dalga payı değeri dikkate alındığında, rezervuar boyunca ilerleyerek baraj gövdesine ulaşacak dalganın gövde için bir tehlike oluşturmayacağı belirlenmiştir. Basit rezervuar geometrileri ve kısa mesafeler için heyelan kaynaklı dalga özelliklerinin hesaplanmasında ampirik eşitliklerin kullanılması önerilirken, kompleks rezervuar geometrileri için mutlaka 3 boyutlu sayısal modellerin kullanılması, bu modellerde ise sayısal tabanlı yamaç duraylılık analizleri uygulanarak hesaplanacak heyelan hacmi değerinin kullanılması gerekliliği göz ardı edilmemelidir.

References

  • Akgün A., (2011), Assessment of possible damaged areas due to landslideinduced waves at a constructed reservoir using empirical approaches: Kurtun (North Turkey) Dam reservoir area, Natural Hazards and Earth System Science, 1, 1341-1350.
  • Bektaş O., Yılmaz C., Taslı K., Akdağ K., Özgür S., (1995), Cretaceous rifting of the eastern Pontide carbonate platform (NE Turkey): the formation of carbonates breccias and turbidites as evidence of a drowned platform. Geologia, 57 (1–2), 233–244.
  • Chow V.T., (1960), Open channel hydraulics, McGraw-Hill, New York.
  • Ersoy H., Karahan M., Akgün A., Anilan T., Sünnetci M.O., Anılan T., Kul Yahşi B., (2019), Modelling of the landslide-induced impulse waves in the Artvin Dam reservoir by empirical approach and 3D numerical simulation, Engineering Geology, 249, 112-128.
  • Ertunç A., Çetin H., (1999), The geological problems of the large dams constructed on the Euphrates River (Turkey), Engineering Geolology, 51, 167-182.
  • Fritz H.M., (2002), Initial phase of landslide generated impulse waves, Mitteilungen 178, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW), ETH, Zurich.
  • Fritz H.M., Hager W.H., Minor H.E., (2004), Near field characteristics of landslide generated impulse waves, Journal of Waterway, Port, Coastal, and Ocean Engineering, 130, 287–302.
  • Gabl R., Seibl J., Gems B., Aufleger M., (2015), 3-D numerical approach to simulate the overtopping volume caused by an impulse wave comparable to avalanche impact in a reservoir, Natural Hazards and Earth System Science, 15, 2617-2630.
  • Grilli S.T., Vogelmann S., Watts, P., (2002), Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides, Engineering Analysis with Boundary Elements, 26, 301-313.
  • Güven İ.H., (1993), Doğu Pontidlerin Jeolojisi ve 1/250.000 Ölçekli Kompilasyonu, MTA Yayınları, Ankara.
  • Heller V., (2007), Landslide generated impulse waves - Prediction of near field characteristics, Doktora Tezi, ETH, Zurich.
  • Heller V., Hager W.H., Minor H.E., (2009), Landslide generated impulse waves in reservoirs – Basics and computation, Mitteilungen 211, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW), Zurich, ss.172.
  • Heller V., Hager W.H., Minor H.E., (2008), Scale effects in subaerial landslide generated impulse waves, Experiments in Fluids, 44, 691-703.
  • Huber A. Hager, W.H., (1997), Forecasting impulse waves in reservoirs, in: Transactions of The International Congress on Large Dams, 1, 993-1006.
  • Hughes S.A., (1993), Physical Models and Laboratory Techniques in Coastal Engineering, World Scientific, Singapore, 588 ss.
  • Kaczmarek H., Tyszkowski S., Banach M., (2015), Landslide development at the shores of a dam reservoir (Włocławek, Poland), based on 40 years of research, Environmental Earth Sciences, 74, 4247-4259.
  • Körner H.J., (1976), Reichweite und Geschwindigkeit von Bergstürzen und Fliessschneelawinen, Rock Mechanics, 8, 225-256.
  • Montagna F., Bellotti G., Risio M.D., (2011), 3D numerical modeling of landslide-generated tsunamis around a conical island, Natural Hazards, 58, 591-608.
  • Müller D.R., (1995), Auflaufen und Überschwappen von Impulswellen an Talsperren, Mitteilungen 137, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW), Zurich, ss. 297.
  • Noda E.K., (1970), Water waves generated by landslides, Journal of the Waterways, Harbors and Coastal Engineering Division, 96, 835-855.
  • Özsayar T., Pelin S., Gedikoğlu, A., (1981), Doğu Pontidler'de Kretase, Karadeniz Teknik Üniversitesi Yerbilimleri Dergisi, 2, 65-114.
  • Panizzo A., De Girolamo P., Petaccia A., (2005), Forecasting impulse waves generated by subaerial landslides. Journal of Geophysical Research, 110, 1-23.
  • Quecedo M., Pastor M., Herreros M.I., (2004), Numerical modelling of impulse wave generated by fast landslides, International Journal for Numerical Methods in Engineering, 59, 633-656.
  • Ramsden J.D., (1996), Forces on a vertical wall due to long waves, bores, and dry-bed surges, Journal of Waterway, Port, Coastal, and Ocean Engineering, 122, 134-141.
  • Riemer W., (1995), Landslides and reservoirs, Proceedings 6th International Symposium on Landslides içinde, (Bell, D.H. Ed.), Balkema Publishers, ss. 213–224.
  • Synolakis C.E., (1987), The runup of solitary waves, Journal of Fluid Mechanics, 185: 523-545.
  • Yin Y.P., Huang B.L., Chen X.T., Liu G.N., Wang S.C., (2015), Numerical analysis of wave generated by the Qianjiangping landslide in Three Gorges Reservoir, China, Landslides, 12, 355-64.
  • Zhang T., Yan E., Cheng J., Zheng Y., (2010), Mechanism of reservoir water in the deformation of Hefeng landslide, Journal of Earth Sciences, 21, 870–875.

Assessment of landslide generated impulse waves in dam reservoirs using empirical relations: a case study on Borçka Dam

Year 2020, Volume: 6 Issue: 2, 248 - 257, 01.07.2020
https://doi.org/10.21324/dacd.621377

Abstract

The aim of this study is to investigate environmental effects of impulse waves originated from reactivation of a paleo-landslide located 4 km far from the dam body in Borçka Dam reservoir using empirical relations. Considering different values of landslide width and thickness, 3 different scenarios were defined for the slide of landslide material in volumes ranging from 0.5 to 1 million cubic meters. The wave propagation in the reservoir was defined as radially, and properties of landslide generated impulse waves were evaluated using 3D empirical approaches. For different scenarios, it is determined that the wave height values range between 27.1 and 27.7 m/s, the wave height value for opposite shore reaches 23 m and run-up height value is 42.3 m for highest wave celerity value. The values of wave height and run-up height were calculated as 18.5 m and 32.5 m respectively for lowest wave celerity value. Considering the 4-meter freeboard for the dam, it was determined that the wave propagating through the reservoir and reaching the dam body would not create a danger for the body. Empirical equations can be used for the calculation of landslide-induced wave characteristics for simple reservoir geometries and short distances. But 3D numerical models should be preferred for complex reservoir geometries, and the need to use the landslide volume value to be calculated by applying numerical based slope stability analyzes should not be ignored in these models.

References

  • Akgün A., (2011), Assessment of possible damaged areas due to landslideinduced waves at a constructed reservoir using empirical approaches: Kurtun (North Turkey) Dam reservoir area, Natural Hazards and Earth System Science, 1, 1341-1350.
  • Bektaş O., Yılmaz C., Taslı K., Akdağ K., Özgür S., (1995), Cretaceous rifting of the eastern Pontide carbonate platform (NE Turkey): the formation of carbonates breccias and turbidites as evidence of a drowned platform. Geologia, 57 (1–2), 233–244.
  • Chow V.T., (1960), Open channel hydraulics, McGraw-Hill, New York.
  • Ersoy H., Karahan M., Akgün A., Anilan T., Sünnetci M.O., Anılan T., Kul Yahşi B., (2019), Modelling of the landslide-induced impulse waves in the Artvin Dam reservoir by empirical approach and 3D numerical simulation, Engineering Geology, 249, 112-128.
  • Ertunç A., Çetin H., (1999), The geological problems of the large dams constructed on the Euphrates River (Turkey), Engineering Geolology, 51, 167-182.
  • Fritz H.M., (2002), Initial phase of landslide generated impulse waves, Mitteilungen 178, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW), ETH, Zurich.
  • Fritz H.M., Hager W.H., Minor H.E., (2004), Near field characteristics of landslide generated impulse waves, Journal of Waterway, Port, Coastal, and Ocean Engineering, 130, 287–302.
  • Gabl R., Seibl J., Gems B., Aufleger M., (2015), 3-D numerical approach to simulate the overtopping volume caused by an impulse wave comparable to avalanche impact in a reservoir, Natural Hazards and Earth System Science, 15, 2617-2630.
  • Grilli S.T., Vogelmann S., Watts, P., (2002), Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides, Engineering Analysis with Boundary Elements, 26, 301-313.
  • Güven İ.H., (1993), Doğu Pontidlerin Jeolojisi ve 1/250.000 Ölçekli Kompilasyonu, MTA Yayınları, Ankara.
  • Heller V., (2007), Landslide generated impulse waves - Prediction of near field characteristics, Doktora Tezi, ETH, Zurich.
  • Heller V., Hager W.H., Minor H.E., (2009), Landslide generated impulse waves in reservoirs – Basics and computation, Mitteilungen 211, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW), Zurich, ss.172.
  • Heller V., Hager W.H., Minor H.E., (2008), Scale effects in subaerial landslide generated impulse waves, Experiments in Fluids, 44, 691-703.
  • Huber A. Hager, W.H., (1997), Forecasting impulse waves in reservoirs, in: Transactions of The International Congress on Large Dams, 1, 993-1006.
  • Hughes S.A., (1993), Physical Models and Laboratory Techniques in Coastal Engineering, World Scientific, Singapore, 588 ss.
  • Kaczmarek H., Tyszkowski S., Banach M., (2015), Landslide development at the shores of a dam reservoir (Włocławek, Poland), based on 40 years of research, Environmental Earth Sciences, 74, 4247-4259.
  • Körner H.J., (1976), Reichweite und Geschwindigkeit von Bergstürzen und Fliessschneelawinen, Rock Mechanics, 8, 225-256.
  • Montagna F., Bellotti G., Risio M.D., (2011), 3D numerical modeling of landslide-generated tsunamis around a conical island, Natural Hazards, 58, 591-608.
  • Müller D.R., (1995), Auflaufen und Überschwappen von Impulswellen an Talsperren, Mitteilungen 137, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW), Zurich, ss. 297.
  • Noda E.K., (1970), Water waves generated by landslides, Journal of the Waterways, Harbors and Coastal Engineering Division, 96, 835-855.
  • Özsayar T., Pelin S., Gedikoğlu, A., (1981), Doğu Pontidler'de Kretase, Karadeniz Teknik Üniversitesi Yerbilimleri Dergisi, 2, 65-114.
  • Panizzo A., De Girolamo P., Petaccia A., (2005), Forecasting impulse waves generated by subaerial landslides. Journal of Geophysical Research, 110, 1-23.
  • Quecedo M., Pastor M., Herreros M.I., (2004), Numerical modelling of impulse wave generated by fast landslides, International Journal for Numerical Methods in Engineering, 59, 633-656.
  • Ramsden J.D., (1996), Forces on a vertical wall due to long waves, bores, and dry-bed surges, Journal of Waterway, Port, Coastal, and Ocean Engineering, 122, 134-141.
  • Riemer W., (1995), Landslides and reservoirs, Proceedings 6th International Symposium on Landslides içinde, (Bell, D.H. Ed.), Balkema Publishers, ss. 213–224.
  • Synolakis C.E., (1987), The runup of solitary waves, Journal of Fluid Mechanics, 185: 523-545.
  • Yin Y.P., Huang B.L., Chen X.T., Liu G.N., Wang S.C., (2015), Numerical analysis of wave generated by the Qianjiangping landslide in Three Gorges Reservoir, China, Landslides, 12, 355-64.
  • Zhang T., Yan E., Cheng J., Zheng Y., (2010), Mechanism of reservoir water in the deformation of Hefeng landslide, Journal of Earth Sciences, 21, 870–875.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Geological Sciences and Engineering (Other)
Journal Section Research Articles
Authors

Hakan Ersoy 0000-0001-5556-547X

Murat Karahan 0000-0002-7024-1649

Hasan Hüseyin Öztürk 0000-0003-0686-4312

Publication Date July 1, 2020
Submission Date September 17, 2019
Acceptance Date December 20, 2019
Published in Issue Year 2020Volume: 6 Issue: 2

Cite

APA Ersoy, H., Karahan, M., & Öztürk, H. H. (2020). Baraj Rezervuarlarında Heyelanlardan Kaynaklanacak İtki Dalga Özelliklerinin Ampirik İlişkilerle Değerlendirilmesi: Borçka Barajı Örneği. Doğal Afetler Ve Çevre Dergisi, 6(2), 248-257. https://doi.org/10.21324/dacd.621377
AMA Ersoy H, Karahan M, Öztürk HH. Baraj Rezervuarlarında Heyelanlardan Kaynaklanacak İtki Dalga Özelliklerinin Ampirik İlişkilerle Değerlendirilmesi: Borçka Barajı Örneği. J Nat Haz Environ. July 2020;6(2):248-257. doi:10.21324/dacd.621377
Chicago Ersoy, Hakan, Murat Karahan, and Hasan Hüseyin Öztürk. “Baraj Rezervuarlarında Heyelanlardan Kaynaklanacak İtki Dalga Özelliklerinin Ampirik İlişkilerle Değerlendirilmesi: Borçka Barajı Örneği”. Doğal Afetler Ve Çevre Dergisi 6, no. 2 (July 2020): 248-57. https://doi.org/10.21324/dacd.621377.
EndNote Ersoy H, Karahan M, Öztürk HH (July 1, 2020) Baraj Rezervuarlarında Heyelanlardan Kaynaklanacak İtki Dalga Özelliklerinin Ampirik İlişkilerle Değerlendirilmesi: Borçka Barajı Örneği. Doğal Afetler ve Çevre Dergisi 6 2 248–257.
IEEE H. Ersoy, M. Karahan, and H. H. Öztürk, “Baraj Rezervuarlarında Heyelanlardan Kaynaklanacak İtki Dalga Özelliklerinin Ampirik İlişkilerle Değerlendirilmesi: Borçka Barajı Örneği”, J Nat Haz Environ, vol. 6, no. 2, pp. 248–257, 2020, doi: 10.21324/dacd.621377.
ISNAD Ersoy, Hakan et al. “Baraj Rezervuarlarında Heyelanlardan Kaynaklanacak İtki Dalga Özelliklerinin Ampirik İlişkilerle Değerlendirilmesi: Borçka Barajı Örneği”. Doğal Afetler ve Çevre Dergisi 6/2 (July 2020), 248-257. https://doi.org/10.21324/dacd.621377.
JAMA Ersoy H, Karahan M, Öztürk HH. Baraj Rezervuarlarında Heyelanlardan Kaynaklanacak İtki Dalga Özelliklerinin Ampirik İlişkilerle Değerlendirilmesi: Borçka Barajı Örneği. J Nat Haz Environ. 2020;6:248–257.
MLA Ersoy, Hakan et al. “Baraj Rezervuarlarında Heyelanlardan Kaynaklanacak İtki Dalga Özelliklerinin Ampirik İlişkilerle Değerlendirilmesi: Borçka Barajı Örneği”. Doğal Afetler Ve Çevre Dergisi, vol. 6, no. 2, 2020, pp. 248-57, doi:10.21324/dacd.621377.
Vancouver Ersoy H, Karahan M, Öztürk HH. Baraj Rezervuarlarında Heyelanlardan Kaynaklanacak İtki Dalga Özelliklerinin Ampirik İlişkilerle Değerlendirilmesi: Borçka Barajı Örneği. J Nat Haz Environ. 2020;6(2):248-57.