In this study considering total suspended solids (TSS) parameter monitored in a stream watershed, the predictability of upstream values from downstream data was investigated using regression analysis, which were applied to linear, power, exponential, and quadratic functions, and artificial neural networks (ANNs) method. The data were obtained within the scope of sampling studies carried out 40 times between June 2019 and March 2020 at eight monitoring stations selected in the Sera Stream Watershed (Trabzon). The monitoring stations were divided into two groups as upstream, the first four, and downstream, the last four, stations. Half of downstream data (two stations) was used for training, a quarter (one station) for validation, and the rest (one station) for testing. Two models with different combinations of independent variables were established. In the first model (M1), only the TSS values, and in the other model (M2), the month and week information of the sampling dates were digitized and used as independent variables, in addition to the TSS values. Root mean square error, mean absolute error, and Nash-Sutcliffe (NS) efficiency coefficient statistics were used to evaluate the model and method performances. Compared to other functions, the power one had the best estimation results in the regression analysis. On the other hand, the ANNs method gave better results than the regression analysis. In both methods, M2 performed better overall. In the ANNs method, the NS efficiency coefficients obtained from M1 and M2 were calculated as 0.980 and 0.997, respectively, for the training, and 0.978 and 0.978, respectively, for the testing data sets. Considering the efficiency values, it has been understood that the use of date information as an independent variable will positively affect the model performance in the stream TSS modeling studies. Within the scope of this study, it has been concluded that upstream TSS values can be successfully estimated from downstream TSS data in stream watersheds.
Total Suspended Solids, Regression Analysis, Sera Stream Watershed, Artificial Neural Networks
Primary Language | Turkish |
---|---|
Subjects | Engineering |
Published Date | Ocak 2023 |
Journal Section | Research Articles |
Authors |
|
Publication Date | January 27, 2023 |
Published in Issue | Year 2023, Volume 9Issue 1 |
Bibtex | @research article { dacd1133981, journal = {Doğal Afetler ve Çevre Dergisi}, eissn = {2528-9640}, address = {}, publisher = {Artvin Çoruh University}, year = {2023}, volume = {9}, number = {1}, pages = {125 - 135}, doi = {10.21324/dacd.1133981}, title = {Regresyon ve Yapay Sinir Ağları Yöntemleri ile Akarsularda Askıda Katı Madde Konsantrasyonu Tahmini}, key = {cite}, author = {Mete, Betül and Nacar, Sinan and Bayram, Adem and Baki, Osman Tuğrul} } |
APA | Mete, B. , Nacar, S. , Bayram, A. & Baki, O. T. (2023). Regresyon ve Yapay Sinir Ağları Yöntemleri ile Akarsularda Askıda Katı Madde Konsantrasyonu Tahmini . Doğal Afetler ve Çevre Dergisi , 9 (1) , 125-135 . DOI: 10.21324/dacd.1133981 |
MLA | Mete, B. , Nacar, S. , Bayram, A. , Baki, O. T. "Regresyon ve Yapay Sinir Ağları Yöntemleri ile Akarsularda Askıda Katı Madde Konsantrasyonu Tahmini" . Doğal Afetler ve Çevre Dergisi 9 (2023 ): 125-135 <http://dacd.artvin.edu.tr/en/pub/issue/75518/1133981> |
Chicago | Mete, B. , Nacar, S. , Bayram, A. , Baki, O. T. "Regresyon ve Yapay Sinir Ağları Yöntemleri ile Akarsularda Askıda Katı Madde Konsantrasyonu Tahmini". Doğal Afetler ve Çevre Dergisi 9 (2023 ): 125-135 |
RIS | TY - JOUR T1 - Estimation of Total Suspended Solids Concentration in Streams Using Regression and Artificial Neural Networks Methods AU - BetülMete, SinanNacar, AdemBayram, Osman TuğrulBaki Y1 - 2023 PY - 2023 N1 - doi: 10.21324/dacd.1133981 DO - 10.21324/dacd.1133981 T2 - Doğal Afetler ve Çevre Dergisi JF - Journal JO - JOR SP - 125 EP - 135 VL - 9 IS - 1 SN - -2528-9640 M3 - doi: 10.21324/dacd.1133981 UR - https://doi.org/10.21324/dacd.1133981 Y2 - 2022 ER - |
EndNote | %0 Journal of Natural Hazards and Environment Regresyon ve Yapay Sinir Ağları Yöntemleri ile Akarsularda Askıda Katı Madde Konsantrasyonu Tahmini %A Betül Mete , Sinan Nacar , Adem Bayram , Osman Tuğrul Baki %T Regresyon ve Yapay Sinir Ağları Yöntemleri ile Akarsularda Askıda Katı Madde Konsantrasyonu Tahmini %D 2023 %J Doğal Afetler ve Çevre Dergisi %P -2528-9640 %V 9 %N 1 %R doi: 10.21324/dacd.1133981 %U 10.21324/dacd.1133981 |
ISNAD | Mete, Betül , Nacar, Sinan , Bayram, Adem , Baki, Osman Tuğrul . "Regresyon ve Yapay Sinir Ağları Yöntemleri ile Akarsularda Askıda Katı Madde Konsantrasyonu Tahmini". Doğal Afetler ve Çevre Dergisi 9 / 1 (January 2023): 125-135 . https://doi.org/10.21324/dacd.1133981 |
AMA | Mete B. , Nacar S. , Bayram A. , Baki O. T. Regresyon ve Yapay Sinir Ağları Yöntemleri ile Akarsularda Askıda Katı Madde Konsantrasyonu Tahmini. J Nat Haz Environ. 2023; 9(1): 125-135. |
Vancouver | Mete B. , Nacar S. , Bayram A. , Baki O. T. Regresyon ve Yapay Sinir Ağları Yöntemleri ile Akarsularda Askıda Katı Madde Konsantrasyonu Tahmini. Doğal Afetler ve Çevre Dergisi. 2023; 9(1): 125-135. |
IEEE | B. Mete , S. Nacar , A. Bayram and O. T. Baki , "Regresyon ve Yapay Sinir Ağları Yöntemleri ile Akarsularda Askıda Katı Madde Konsantrasyonu Tahmini", Doğal Afetler ve Çevre Dergisi, vol. 9, no. 1, pp. 125-135, Jan. 2023, doi:10.21324/dacd.1133981 |
This journal is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.