Research Article
BibTex RIS Cite

Taşkın Riski Değerlendirmesi Kapsamında Landsat-8 Uydu Verileri ile 2015 Yılı Devrek Zonguldak Heyelanının İzlenmesi ve Değerlendirilmesi

Year 2023, Volume: 9 Issue: 1, 81 - 89, 27.01.2023
https://doi.org/10.21324/dacd.1152670

Abstract

Heyelan olayları sonucunda akarsu yataklarına doğru kütle hareketi olması ve orada yığılması taşkın olaylarına neden olabilmektedir. Bu çalışmada 2015 yılında meydana gelen Devrek Heyelanı uzaktan algılama tekniği kullanılarak incelenmiştir. Çomaklar deresi bu heyelan bölgesinin alt kotlarında yer almaktadır. Çomaklar deresi ve çevresindeki yerleşimler, heyelan ile hareket eden kütlenin dereyi kapatması ihtimali ve etkilerinden dolayı, taşkın riski altındadır. Devrek ilçesi, Türkiye'nin kuzey kesiminde Zonguldak'ta yer almaktadır. Devrek ilçesi heyelanın yerini ve boyutunu araştırmak için 27 Ocak 2015 ve 22 Temmuz 2015 tarihleri arasında LANDSAT-8 uydu görüntüleri kullanılmıştır. Uydu kaynaklı uzaktan algılama verisi, yeryüzü üzerindeki değişimleri izlemek ve bilgi temin etmek için son yıllarda yaygın olarak kullanılmaktadır. Bu çalışmada heyelan olayı öncesi ve sonrası görüntülerin karşılaştırılmasında Spektral Açı Farkı yöntemi kullanılmıştır. Afetten etkilenen alanı araştırmak için heyelan öncesi ve heyelan sonrası görüntüler arasında değişim tespit analizi yapılmıştır. Sonuç olarak heyelan uzunluğu 1050 metre, genişliği 110 metre, heyelan alanı ise 10.87 ha olarak hesaplanmıştır.

References

  • AFAD, (2022), Turkey landslide intensity map, https://www.afad.gov.tr/kurumlar/afad.gov.tr/3506/xfiles/96-2014060215311-heyelan_yogunluk_a1_olceksiz.pdf, [Accessed 26 April 2022].
  • Akgül M.A., (2018), Sentetik Açıklıklı Radar verilerinin Taşkın Çalışmalarında Kullanılması: Berdan Ovası Taşkını, Geomatik Dergisi, 3(2), 154-162. (in Turkish)
  • Akgül M.A., Çetin, M., (2019). Tarımsal Drenaj Alanlarında Meydana Gelen Taşkınlar ve Etki Alanlarının Uzaktan Algılama ile Belirlenmesi: Aşağı Seyhan Ovası Alt Havzasında Örnek Bir Çalışma, 10. Ulusal Hidroloji Kongresi, 9-12 Ekim, Muğla. (in Turkish)
  • Bernstein L.S., Adler-Golden S.M., Sundberg R.L., Levine R.Y., Perkins T.C., Berk A., Ratkowski A.J., Felde G., Hoke M.L., (2005), Validation of the QUick Atmospheric Correction (QUAC) algorithm for VNIR-SWIR multi- and hyperspectral imagery, Proceedings SPIE 5806, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, Vol. 5806, Orlando, Florida, USA, pp.668–678.
  • Dahal R.K., (2017), Landslide hazard mapping in GIS, Journal of Nepal Geological Society, 53, 63-91.
  • Dahal B.K., Dahal R.K., (2017), Landslide hazard map: tool for optimization of low-cost mitigation, Geoenvironmental Disasters, 4, 8, doi: 10.1186/s40677-017-0071-3.
  • DSİ, (2017), Batı Karadeniz Havzası Master Plan Nihai Raporu, Aralık 2017, Ankara, 2139ss. (in Turkish)
  • DSİ, (2022), DSİ 23. Bölge Müdürlüğü 2022 Yılı Yatırım Programı ve -Bütçe Takdim Raporu, Kastamonu, 347ss. (in Turkish)
  • Eker R., Aydın A., (2019), Preliminary results of monitoring an active landslide with aerial photographs and UAV data: A case of Devrek landslide, 3rd International Engineering Research Symposium, September 05-07, 2019, Düzce, Turkey.
  • Ersoy H., Karahan M., Öztürk H.H., (2020), Baraj Rezervuarlarında Heyelanlardan Kaynaklanacak İtki Dalga Özelliklerinin Ampirik İlişkilerle Değerlendirilmesi: Borçka Barajı Örneği, Doğal Afetler ve Çevre Dergisi, 6(2), 248-257. (in Turkish)
  • Görmüş K.S., Kutoğlu S.H., Gürbüz G., Çapar Ö.F., Akgül V., (2018), A Multidisciplinary Landslide Case Study: Devrek Landslide, ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XLII-3/W4, 227-230.
  • Karakuş K., Özmen M., Kırkbudak H., Yıldız C., (2016), Devrek Heyelanı, Ulusal Heyelan Sempozyumu, 27-29 Nisan, Ankara. (in Turkish)
  • Kruse F.A., Lefkoff A.B., Boardman J.W., Heidebrecht K.B., Shapiro A.T., Barloon P.J., Goetz A.F.H., (1993), The Spectral Image Processing System (SIPS)-Interactive Visualization and Analysis of Imaging Spectrometer Data, Remote Sensing of Environment, 44, 145-163.
  • L3HARRIS, (2022a), About the Atmospheric Correction Module, L3HARRIS Geospatial, https://www.l3harrisgeospatial.com/docs/ aboutatmosphericcorrectionmodule.html, [Accessed 08 September 2022].
  • L3HARRIS, (2022b), Image Change, https://www.l3harrisgeospatial.com/docs/ImageChange.html, [Accessed 09 September 2022].
  • Liu G., Guo H., Perski Z., Fan J., Sousa J.J., Yan S., Tang P., (2019), Landslide movement monitoring with ALOS-2 SAR data, IOP Conf. Series: Earth and Environmental Science, 227, 062015. doi: 10.1088/1755-1315/227/6/062015.
  • Lodhi V., Chakravarty D., Mitra P., (2018), A framework for region based quantitative mapping using hybrid constrained PSO based approach, IOP Conf. Series: Earth and Environmental Science, 169, 012079. doi: 10.1088/1755-1315/169/1/012079.
  • Ma Y., Chen F., Liu J., He Y., Duan J., Li X., (2016), An Automatic Procedure for Early Disaster Change Mapping Based on Optical Remote Sensing, Remote Sensing, 8(4), 272. doi:10.3390/rs8040272.
  • Otsu N., (1979), A threshold selection algorithm from gray-level histograms, IEEE Transaction on Systems, Man and Cybernetics, Vol. SMC-9, No.1, 62–66.
  • Qin Y., Lu P., Li Z., (2018), Landslide Inventory Mapping from Bitemporal 10 m Sentinel-2 Images Using Change Detection Based Markov Random Field, ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XLII-3, 1447-1452.
  • Rai P.K., Mohan K., Kumra V.K., (2014), Landslide Hazard and Its Mapping Using Remote Sensing and GIS, Journal of Scientific Research, 58(1), 1-13.
  • Roemer H., Kaiser G., Sterr H., Ludwig R., (2010), Using remote sensing to assess tsunami-induced impacts on coastal forest ecosystems at the Andaman Sea coast of Thailand, Nat. Hazards Earth Syst. Sci. 10, 729–745.
  • Stumpf A., Malet J.-P., Delacourt C., (2017), Correlation of satellite image time-series for the detection and monitoring of slow-moving landslides, Remote Sensing of Environment 189, 40–55.
  • SYGM, (2019), Batı Karadeniz Havzası Taşkın Yönetim Planı, Su Yönetimi Genel Müdürlüğü (SYGM), Ankara, 43ss. (in Turkish).
  • Tajudin N., Ya’acob N., Ali D.M., Adnan N.A., (2020), Land Cover Change Detection Analysis for Landslide Monitoring Using SPOT-5 Satellite Images, Journal of Electrical and Electronics Systems Research, 17, 80-84.
  • Theilen-Willige B., (2010), Detection of local site conditions influencing earthquake shaking and secondary effects in Southwest-Haiti using remote sensing and GIS-methods, Nat. Hazards Earth Syst. Sci. 10, 1183–1196.
  • USGS, (2013), Landsat 8, https://pubs.usgs.gov/fs/2013/3060/, [Accessed 25 April 2022].
  • USGS, (2016), Landsat—Earth observation satellites, https://doi.org/10.3133/fs20153081, [Accessed 25 April 2022].
  • USGS, (2022), Landsat 8, https://www.usgs.gov/landsat-missions/landsat-8 [Accessed 08 April 2022].
  • van Leeuwen B., Tobak Z., Kovács F., Sipos G., (2017), Towards a Continuous Inland Excess Water Flood Monitoring System Based on Remote Sensing Data, Journal of Environmental Geography, 10 (3–4), 9–15.
  • van Westen C.J., (2000), Remote sensing for natural disaster management, International archives of photogrammetry and remote sensing, Vol. XXXIII, Part B7, 1609-1617.
  • Varangaonkar P., Rode S.V., (2019), Methods of Landslide Detection using GIS and Remote Sensing Images, International Journal of Engineering and Advanced Technology, 9(2), 2121-2125.
  • Womble J.A., Wood R.L., Mohammadi M.E., (2018), Multi-Scale Remote Sensing of Tornado Effects, Frontiers in Built Environment, 4, 66. doi: 10.3389/fbuil.2018.00066.

Monitoring and Evaluation of 2015 Devrek Zonguldak Landslide within the scope of Flood Risk Assessment by Landsat-8 Satellite Data

Year 2023, Volume: 9 Issue: 1, 81 - 89, 27.01.2023
https://doi.org/10.21324/dacd.1152670

Abstract

The mass movement towards stream beds and their accumulation there may cause flood events as a result of landslide events. In this study, Devrek Landslide, which occurred in 2015, was investigated by using a remote sensing technique. The Çomaklar stream is located at the lower elevations of this landslide region. Çomaklar stream and surrounding settlements are at risk of flooding due to the probability of preventing the water flow in the stream because of the effects of the landslide. Devrek district is located in Zonguldak in the northern part of Turkey. LANDSAT-8 satellite images between the dates 27 January 2015 and 22 July 2015 were used to investigate the location and size of the Devrek district landslide. Satellite-derived remote sensing data have been widely used in recent years to monitor changes on the earth's surface and to provide information. In this study, the Spectral Angle Difference method was used to compare the images before and after the landslide event. A change detection analysis was conducted between pre-landslide and post-landslide images to investigate the area affected by the disaster. As a result, the landslide was determined as 1050 meters in length and 110 meters in width, and the landslide area was calculated as 10.87 ha.

References

  • AFAD, (2022), Turkey landslide intensity map, https://www.afad.gov.tr/kurumlar/afad.gov.tr/3506/xfiles/96-2014060215311-heyelan_yogunluk_a1_olceksiz.pdf, [Accessed 26 April 2022].
  • Akgül M.A., (2018), Sentetik Açıklıklı Radar verilerinin Taşkın Çalışmalarında Kullanılması: Berdan Ovası Taşkını, Geomatik Dergisi, 3(2), 154-162. (in Turkish)
  • Akgül M.A., Çetin, M., (2019). Tarımsal Drenaj Alanlarında Meydana Gelen Taşkınlar ve Etki Alanlarının Uzaktan Algılama ile Belirlenmesi: Aşağı Seyhan Ovası Alt Havzasında Örnek Bir Çalışma, 10. Ulusal Hidroloji Kongresi, 9-12 Ekim, Muğla. (in Turkish)
  • Bernstein L.S., Adler-Golden S.M., Sundberg R.L., Levine R.Y., Perkins T.C., Berk A., Ratkowski A.J., Felde G., Hoke M.L., (2005), Validation of the QUick Atmospheric Correction (QUAC) algorithm for VNIR-SWIR multi- and hyperspectral imagery, Proceedings SPIE 5806, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, Vol. 5806, Orlando, Florida, USA, pp.668–678.
  • Dahal R.K., (2017), Landslide hazard mapping in GIS, Journal of Nepal Geological Society, 53, 63-91.
  • Dahal B.K., Dahal R.K., (2017), Landslide hazard map: tool for optimization of low-cost mitigation, Geoenvironmental Disasters, 4, 8, doi: 10.1186/s40677-017-0071-3.
  • DSİ, (2017), Batı Karadeniz Havzası Master Plan Nihai Raporu, Aralık 2017, Ankara, 2139ss. (in Turkish)
  • DSİ, (2022), DSİ 23. Bölge Müdürlüğü 2022 Yılı Yatırım Programı ve -Bütçe Takdim Raporu, Kastamonu, 347ss. (in Turkish)
  • Eker R., Aydın A., (2019), Preliminary results of monitoring an active landslide with aerial photographs and UAV data: A case of Devrek landslide, 3rd International Engineering Research Symposium, September 05-07, 2019, Düzce, Turkey.
  • Ersoy H., Karahan M., Öztürk H.H., (2020), Baraj Rezervuarlarında Heyelanlardan Kaynaklanacak İtki Dalga Özelliklerinin Ampirik İlişkilerle Değerlendirilmesi: Borçka Barajı Örneği, Doğal Afetler ve Çevre Dergisi, 6(2), 248-257. (in Turkish)
  • Görmüş K.S., Kutoğlu S.H., Gürbüz G., Çapar Ö.F., Akgül V., (2018), A Multidisciplinary Landslide Case Study: Devrek Landslide, ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XLII-3/W4, 227-230.
  • Karakuş K., Özmen M., Kırkbudak H., Yıldız C., (2016), Devrek Heyelanı, Ulusal Heyelan Sempozyumu, 27-29 Nisan, Ankara. (in Turkish)
  • Kruse F.A., Lefkoff A.B., Boardman J.W., Heidebrecht K.B., Shapiro A.T., Barloon P.J., Goetz A.F.H., (1993), The Spectral Image Processing System (SIPS)-Interactive Visualization and Analysis of Imaging Spectrometer Data, Remote Sensing of Environment, 44, 145-163.
  • L3HARRIS, (2022a), About the Atmospheric Correction Module, L3HARRIS Geospatial, https://www.l3harrisgeospatial.com/docs/ aboutatmosphericcorrectionmodule.html, [Accessed 08 September 2022].
  • L3HARRIS, (2022b), Image Change, https://www.l3harrisgeospatial.com/docs/ImageChange.html, [Accessed 09 September 2022].
  • Liu G., Guo H., Perski Z., Fan J., Sousa J.J., Yan S., Tang P., (2019), Landslide movement monitoring with ALOS-2 SAR data, IOP Conf. Series: Earth and Environmental Science, 227, 062015. doi: 10.1088/1755-1315/227/6/062015.
  • Lodhi V., Chakravarty D., Mitra P., (2018), A framework for region based quantitative mapping using hybrid constrained PSO based approach, IOP Conf. Series: Earth and Environmental Science, 169, 012079. doi: 10.1088/1755-1315/169/1/012079.
  • Ma Y., Chen F., Liu J., He Y., Duan J., Li X., (2016), An Automatic Procedure for Early Disaster Change Mapping Based on Optical Remote Sensing, Remote Sensing, 8(4), 272. doi:10.3390/rs8040272.
  • Otsu N., (1979), A threshold selection algorithm from gray-level histograms, IEEE Transaction on Systems, Man and Cybernetics, Vol. SMC-9, No.1, 62–66.
  • Qin Y., Lu P., Li Z., (2018), Landslide Inventory Mapping from Bitemporal 10 m Sentinel-2 Images Using Change Detection Based Markov Random Field, ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XLII-3, 1447-1452.
  • Rai P.K., Mohan K., Kumra V.K., (2014), Landslide Hazard and Its Mapping Using Remote Sensing and GIS, Journal of Scientific Research, 58(1), 1-13.
  • Roemer H., Kaiser G., Sterr H., Ludwig R., (2010), Using remote sensing to assess tsunami-induced impacts on coastal forest ecosystems at the Andaman Sea coast of Thailand, Nat. Hazards Earth Syst. Sci. 10, 729–745.
  • Stumpf A., Malet J.-P., Delacourt C., (2017), Correlation of satellite image time-series for the detection and monitoring of slow-moving landslides, Remote Sensing of Environment 189, 40–55.
  • SYGM, (2019), Batı Karadeniz Havzası Taşkın Yönetim Planı, Su Yönetimi Genel Müdürlüğü (SYGM), Ankara, 43ss. (in Turkish).
  • Tajudin N., Ya’acob N., Ali D.M., Adnan N.A., (2020), Land Cover Change Detection Analysis for Landslide Monitoring Using SPOT-5 Satellite Images, Journal of Electrical and Electronics Systems Research, 17, 80-84.
  • Theilen-Willige B., (2010), Detection of local site conditions influencing earthquake shaking and secondary effects in Southwest-Haiti using remote sensing and GIS-methods, Nat. Hazards Earth Syst. Sci. 10, 1183–1196.
  • USGS, (2013), Landsat 8, https://pubs.usgs.gov/fs/2013/3060/, [Accessed 25 April 2022].
  • USGS, (2016), Landsat—Earth observation satellites, https://doi.org/10.3133/fs20153081, [Accessed 25 April 2022].
  • USGS, (2022), Landsat 8, https://www.usgs.gov/landsat-missions/landsat-8 [Accessed 08 April 2022].
  • van Leeuwen B., Tobak Z., Kovács F., Sipos G., (2017), Towards a Continuous Inland Excess Water Flood Monitoring System Based on Remote Sensing Data, Journal of Environmental Geography, 10 (3–4), 9–15.
  • van Westen C.J., (2000), Remote sensing for natural disaster management, International archives of photogrammetry and remote sensing, Vol. XXXIII, Part B7, 1609-1617.
  • Varangaonkar P., Rode S.V., (2019), Methods of Landslide Detection using GIS and Remote Sensing Images, International Journal of Engineering and Advanced Technology, 9(2), 2121-2125.
  • Womble J.A., Wood R.L., Mohammadi M.E., (2018), Multi-Scale Remote Sensing of Tornado Effects, Frontiers in Built Environment, 4, 66. doi: 10.3389/fbuil.2018.00066.
There are 33 citations in total.

Details

Primary Language English
Subjects Geological Sciences and Engineering (Other)
Journal Section Research Articles
Authors

Şerife Pınar Güvel 0000-0002-3175-5938

Mehmet Ali Akgül 0000-0002-5517-9576

Mehveş Feyza Akkoyunlu 0000-0002-4966-8218

Publication Date January 27, 2023
Submission Date August 1, 2022
Acceptance Date November 22, 2022
Published in Issue Year 2023Volume: 9 Issue: 1

Cite

APA Güvel, Ş. P., Akgül, M. A., & Akkoyunlu, M. F. (2023). Monitoring and Evaluation of 2015 Devrek Zonguldak Landslide within the scope of Flood Risk Assessment by Landsat-8 Satellite Data. Doğal Afetler Ve Çevre Dergisi, 9(1), 81-89. https://doi.org/10.21324/dacd.1152670
AMA Güvel ŞP, Akgül MA, Akkoyunlu MF. Monitoring and Evaluation of 2015 Devrek Zonguldak Landslide within the scope of Flood Risk Assessment by Landsat-8 Satellite Data. J Nat Haz Environ. January 2023;9(1):81-89. doi:10.21324/dacd.1152670
Chicago Güvel, Şerife Pınar, Mehmet Ali Akgül, and Mehveş Feyza Akkoyunlu. “Monitoring and Evaluation of 2015 Devrek Zonguldak Landslide Within the Scope of Flood Risk Assessment by Landsat-8 Satellite Data”. Doğal Afetler Ve Çevre Dergisi 9, no. 1 (January 2023): 81-89. https://doi.org/10.21324/dacd.1152670.
EndNote Güvel ŞP, Akgül MA, Akkoyunlu MF (January 1, 2023) Monitoring and Evaluation of 2015 Devrek Zonguldak Landslide within the scope of Flood Risk Assessment by Landsat-8 Satellite Data. Doğal Afetler ve Çevre Dergisi 9 1 81–89.
IEEE Ş. P. Güvel, M. A. Akgül, and M. F. Akkoyunlu, “Monitoring and Evaluation of 2015 Devrek Zonguldak Landslide within the scope of Flood Risk Assessment by Landsat-8 Satellite Data”, J Nat Haz Environ, vol. 9, no. 1, pp. 81–89, 2023, doi: 10.21324/dacd.1152670.
ISNAD Güvel, Şerife Pınar et al. “Monitoring and Evaluation of 2015 Devrek Zonguldak Landslide Within the Scope of Flood Risk Assessment by Landsat-8 Satellite Data”. Doğal Afetler ve Çevre Dergisi 9/1 (January 2023), 81-89. https://doi.org/10.21324/dacd.1152670.
JAMA Güvel ŞP, Akgül MA, Akkoyunlu MF. Monitoring and Evaluation of 2015 Devrek Zonguldak Landslide within the scope of Flood Risk Assessment by Landsat-8 Satellite Data. J Nat Haz Environ. 2023;9:81–89.
MLA Güvel, Şerife Pınar et al. “Monitoring and Evaluation of 2015 Devrek Zonguldak Landslide Within the Scope of Flood Risk Assessment by Landsat-8 Satellite Data”. Doğal Afetler Ve Çevre Dergisi, vol. 9, no. 1, 2023, pp. 81-89, doi:10.21324/dacd.1152670.
Vancouver Güvel ŞP, Akgül MA, Akkoyunlu MF. Monitoring and Evaluation of 2015 Devrek Zonguldak Landslide within the scope of Flood Risk Assessment by Landsat-8 Satellite Data. J Nat Haz Environ. 2023;9(1):81-9.