Research Article
PDF EndNote BibTex RIS Cite

Monitoring and Evaluation of 2015 Devrek Zonguldak Landslide within the scope of Flood Risk Assessment by Landsat-8 Satellite Data

Year 2023, Volume 9, Issue 1, 81 - 89, 27.01.2023
https://doi.org/10.21324/dacd.1152670

Abstract

The mass movement towards stream beds and their accumulation there may cause flood events as a result of landslide events. In this study, Devrek Landslide, which occurred in 2015, was investigated by using a remote sensing technique. The Çomaklar stream is located at the lower elevations of this landslide region. Çomaklar stream and surrounding settlements are at risk of flooding due to the probability of preventing the water flow in the stream because of the effects of the landslide. Devrek district is located in Zonguldak in the northern part of Turkey. LANDSAT-8 satellite images between the dates 27 January 2015 and 22 July 2015 were used to investigate the location and size of the Devrek district landslide. Satellite-derived remote sensing data have been widely used in recent years to monitor changes on the earth's surface and to provide information. In this study, the Spectral Angle Difference method was used to compare the images before and after the landslide event. A change detection analysis was conducted between pre-landslide and post-landslide images to investigate the area affected by the disaster. As a result, the landslide was determined as 1050 meters in length and 110 meters in width, and the landslide area was calculated as 10.87 ha.

References

  • AFAD, (2022), Turkey landslide intensity map, https://www.afad.gov.tr/kurumlar/afad.gov.tr/3506/xfiles/96-2014060215311-heyelan_yogunluk_a1_olceksiz.pdf, [Accessed 26 April 2022].
  • Akgül M.A., (2018), Sentetik Açıklıklı Radar verilerinin Taşkın Çalışmalarında Kullanılması: Berdan Ovası Taşkını, Geomatik Dergisi, 3(2), 154-162. (in Turkish)
  • Akgül M.A., Çetin, M., (2019). Tarımsal Drenaj Alanlarında Meydana Gelen Taşkınlar ve Etki Alanlarının Uzaktan Algılama ile Belirlenmesi: Aşağı Seyhan Ovası Alt Havzasında Örnek Bir Çalışma, 10. Ulusal Hidroloji Kongresi, 9-12 Ekim, Muğla. (in Turkish)
  • Bernstein L.S., Adler-Golden S.M., Sundberg R.L., Levine R.Y., Perkins T.C., Berk A., Ratkowski A.J., Felde G., Hoke M.L., (2005), Validation of the QUick Atmospheric Correction (QUAC) algorithm for VNIR-SWIR multi- and hyperspectral imagery, Proceedings SPIE 5806, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, Vol. 5806, Orlando, Florida, USA, pp.668–678.
  • Dahal R.K., (2017), Landslide hazard mapping in GIS, Journal of Nepal Geological Society, 53, 63-91.
  • Dahal B.K., Dahal R.K., (2017), Landslide hazard map: tool for optimization of low-cost mitigation, Geoenvironmental Disasters, 4, 8, doi: 10.1186/s40677-017-0071-3.
  • DSİ, (2017), Batı Karadeniz Havzası Master Plan Nihai Raporu, Aralık 2017, Ankara, 2139ss. (in Turkish)
  • DSİ, (2022), DSİ 23. Bölge Müdürlüğü 2022 Yılı Yatırım Programı ve -Bütçe Takdim Raporu, Kastamonu, 347ss. (in Turkish)
  • Eker R., Aydın A., (2019), Preliminary results of monitoring an active landslide with aerial photographs and UAV data: A case of Devrek landslide, 3rd International Engineering Research Symposium, September 05-07, 2019, Düzce, Turkey.
  • Ersoy H., Karahan M., Öztürk H.H., (2020), Baraj Rezervuarlarında Heyelanlardan Kaynaklanacak İtki Dalga Özelliklerinin Ampirik İlişkilerle Değerlendirilmesi: Borçka Barajı Örneği, Doğal Afetler ve Çevre Dergisi, 6(2), 248-257. (in Turkish)
  • Görmüş K.S., Kutoğlu S.H., Gürbüz G., Çapar Ö.F., Akgül V., (2018), A Multidisciplinary Landslide Case Study: Devrek Landslide, ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XLII-3/W4, 227-230.
  • Karakuş K., Özmen M., Kırkbudak H., Yıldız C., (2016), Devrek Heyelanı, Ulusal Heyelan Sempozyumu, 27-29 Nisan, Ankara. (in Turkish)
  • Kruse F.A., Lefkoff A.B., Boardman J.W., Heidebrecht K.B., Shapiro A.T., Barloon P.J., Goetz A.F.H., (1993), The Spectral Image Processing System (SIPS)-Interactive Visualization and Analysis of Imaging Spectrometer Data, Remote Sensing of Environment, 44, 145-163.
  • L3HARRIS, (2022a), About the Atmospheric Correction Module, L3HARRIS Geospatial, https://www.l3harrisgeospatial.com/docs/ aboutatmosphericcorrectionmodule.html, [Accessed 08 September 2022].
  • L3HARRIS, (2022b), Image Change, https://www.l3harrisgeospatial.com/docs/ImageChange.html, [Accessed 09 September 2022].
  • Liu G., Guo H., Perski Z., Fan J., Sousa J.J., Yan S., Tang P., (2019), Landslide movement monitoring with ALOS-2 SAR data, IOP Conf. Series: Earth and Environmental Science, 227, 062015. doi: 10.1088/1755-1315/227/6/062015.
  • Lodhi V., Chakravarty D., Mitra P., (2018), A framework for region based quantitative mapping using hybrid constrained PSO based approach, IOP Conf. Series: Earth and Environmental Science, 169, 012079. doi: 10.1088/1755-1315/169/1/012079.
  • Ma Y., Chen F., Liu J., He Y., Duan J., Li X., (2016), An Automatic Procedure for Early Disaster Change Mapping Based on Optical Remote Sensing, Remote Sensing, 8(4), 272. doi:10.3390/rs8040272.
  • Otsu N., (1979), A threshold selection algorithm from gray-level histograms, IEEE Transaction on Systems, Man and Cybernetics, Vol. SMC-9, No.1, 62–66.
  • Qin Y., Lu P., Li Z., (2018), Landslide Inventory Mapping from Bitemporal 10 m Sentinel-2 Images Using Change Detection Based Markov Random Field, ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XLII-3, 1447-1452.
  • Rai P.K., Mohan K., Kumra V.K., (2014), Landslide Hazard and Its Mapping Using Remote Sensing and GIS, Journal of Scientific Research, 58(1), 1-13.
  • Roemer H., Kaiser G., Sterr H., Ludwig R., (2010), Using remote sensing to assess tsunami-induced impacts on coastal forest ecosystems at the Andaman Sea coast of Thailand, Nat. Hazards Earth Syst. Sci. 10, 729–745.
  • Stumpf A., Malet J.-P., Delacourt C., (2017), Correlation of satellite image time-series for the detection and monitoring of slow-moving landslides, Remote Sensing of Environment 189, 40–55.
  • SYGM, (2019), Batı Karadeniz Havzası Taşkın Yönetim Planı, Su Yönetimi Genel Müdürlüğü (SYGM), Ankara, 43ss. (in Turkish).
  • Tajudin N., Ya’acob N., Ali D.M., Adnan N.A., (2020), Land Cover Change Detection Analysis for Landslide Monitoring Using SPOT-5 Satellite Images, Journal of Electrical and Electronics Systems Research, 17, 80-84.
  • Theilen-Willige B., (2010), Detection of local site conditions influencing earthquake shaking and secondary effects in Southwest-Haiti using remote sensing and GIS-methods, Nat. Hazards Earth Syst. Sci. 10, 1183–1196.
  • USGS, (2013), Landsat 8, https://pubs.usgs.gov/fs/2013/3060/, [Accessed 25 April 2022].
  • USGS, (2016), Landsat—Earth observation satellites, https://doi.org/10.3133/fs20153081, [Accessed 25 April 2022].
  • USGS, (2022), Landsat 8, https://www.usgs.gov/landsat-missions/landsat-8 [Accessed 08 April 2022].
  • van Leeuwen B., Tobak Z., Kovács F., Sipos G., (2017), Towards a Continuous Inland Excess Water Flood Monitoring System Based on Remote Sensing Data, Journal of Environmental Geography, 10 (3–4), 9–15.
  • van Westen C.J., (2000), Remote sensing for natural disaster management, International archives of photogrammetry and remote sensing, Vol. XXXIII, Part B7, 1609-1617.
  • Varangaonkar P., Rode S.V., (2019), Methods of Landslide Detection using GIS and Remote Sensing Images, International Journal of Engineering and Advanced Technology, 9(2), 2121-2125.
  • Womble J.A., Wood R.L., Mohammadi M.E., (2018), Multi-Scale Remote Sensing of Tornado Effects, Frontiers in Built Environment, 4, 66. doi: 10.3389/fbuil.2018.00066.

Taşkın Riski Değerlendirmesi Kapsamında Landsat-8 Uydu Verileri ile 2015 Yılı Devrek Zonguldak Heyelanının İzlenmesi ve Değerlendirilmesi

Year 2023, Volume 9, Issue 1, 81 - 89, 27.01.2023
https://doi.org/10.21324/dacd.1152670

Abstract

Heyelan olayları sonucunda akarsu yataklarına doğru kütle hareketi olması ve orada yığılması taşkın olaylarına neden olabilmektedir. Bu çalışmada 2015 yılında meydana gelen Devrek Heyelanı uzaktan algılama tekniği kullanılarak incelenmiştir. Çomaklar deresi bu heyelan bölgesinin alt kotlarında yer almaktadır. Çomaklar deresi ve çevresindeki yerleşimler, heyelan ile hareket eden kütlenin dereyi kapatması ihtimali ve etkilerinden dolayı, taşkın riski altındadır. Devrek ilçesi, Türkiye'nin kuzey kesiminde Zonguldak'ta yer almaktadır. Devrek ilçesi heyelanın yerini ve boyutunu araştırmak için 27 Ocak 2015 ve 22 Temmuz 2015 tarihleri arasında LANDSAT-8 uydu görüntüleri kullanılmıştır. Uydu kaynaklı uzaktan algılama verisi, yeryüzü üzerindeki değişimleri izlemek ve bilgi temin etmek için son yıllarda yaygın olarak kullanılmaktadır. Bu çalışmada heyelan olayı öncesi ve sonrası görüntülerin karşılaştırılmasında Spektral Açı Farkı yöntemi kullanılmıştır. Afetten etkilenen alanı araştırmak için heyelan öncesi ve heyelan sonrası görüntüler arasında değişim tespit analizi yapılmıştır. Sonuç olarak heyelan uzunluğu 1050 metre, genişliği 110 metre, heyelan alanı ise 10.87 ha olarak hesaplanmıştır.

References

  • AFAD, (2022), Turkey landslide intensity map, https://www.afad.gov.tr/kurumlar/afad.gov.tr/3506/xfiles/96-2014060215311-heyelan_yogunluk_a1_olceksiz.pdf, [Accessed 26 April 2022].
  • Akgül M.A., (2018), Sentetik Açıklıklı Radar verilerinin Taşkın Çalışmalarında Kullanılması: Berdan Ovası Taşkını, Geomatik Dergisi, 3(2), 154-162. (in Turkish)
  • Akgül M.A., Çetin, M., (2019). Tarımsal Drenaj Alanlarında Meydana Gelen Taşkınlar ve Etki Alanlarının Uzaktan Algılama ile Belirlenmesi: Aşağı Seyhan Ovası Alt Havzasında Örnek Bir Çalışma, 10. Ulusal Hidroloji Kongresi, 9-12 Ekim, Muğla. (in Turkish)
  • Bernstein L.S., Adler-Golden S.M., Sundberg R.L., Levine R.Y., Perkins T.C., Berk A., Ratkowski A.J., Felde G., Hoke M.L., (2005), Validation of the QUick Atmospheric Correction (QUAC) algorithm for VNIR-SWIR multi- and hyperspectral imagery, Proceedings SPIE 5806, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, Vol. 5806, Orlando, Florida, USA, pp.668–678.
  • Dahal R.K., (2017), Landslide hazard mapping in GIS, Journal of Nepal Geological Society, 53, 63-91.
  • Dahal B.K., Dahal R.K., (2017), Landslide hazard map: tool for optimization of low-cost mitigation, Geoenvironmental Disasters, 4, 8, doi: 10.1186/s40677-017-0071-3.
  • DSİ, (2017), Batı Karadeniz Havzası Master Plan Nihai Raporu, Aralık 2017, Ankara, 2139ss. (in Turkish)
  • DSİ, (2022), DSİ 23. Bölge Müdürlüğü 2022 Yılı Yatırım Programı ve -Bütçe Takdim Raporu, Kastamonu, 347ss. (in Turkish)
  • Eker R., Aydın A., (2019), Preliminary results of monitoring an active landslide with aerial photographs and UAV data: A case of Devrek landslide, 3rd International Engineering Research Symposium, September 05-07, 2019, Düzce, Turkey.
  • Ersoy H., Karahan M., Öztürk H.H., (2020), Baraj Rezervuarlarında Heyelanlardan Kaynaklanacak İtki Dalga Özelliklerinin Ampirik İlişkilerle Değerlendirilmesi: Borçka Barajı Örneği, Doğal Afetler ve Çevre Dergisi, 6(2), 248-257. (in Turkish)
  • Görmüş K.S., Kutoğlu S.H., Gürbüz G., Çapar Ö.F., Akgül V., (2018), A Multidisciplinary Landslide Case Study: Devrek Landslide, ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XLII-3/W4, 227-230.
  • Karakuş K., Özmen M., Kırkbudak H., Yıldız C., (2016), Devrek Heyelanı, Ulusal Heyelan Sempozyumu, 27-29 Nisan, Ankara. (in Turkish)
  • Kruse F.A., Lefkoff A.B., Boardman J.W., Heidebrecht K.B., Shapiro A.T., Barloon P.J., Goetz A.F.H., (1993), The Spectral Image Processing System (SIPS)-Interactive Visualization and Analysis of Imaging Spectrometer Data, Remote Sensing of Environment, 44, 145-163.
  • L3HARRIS, (2022a), About the Atmospheric Correction Module, L3HARRIS Geospatial, https://www.l3harrisgeospatial.com/docs/ aboutatmosphericcorrectionmodule.html, [Accessed 08 September 2022].
  • L3HARRIS, (2022b), Image Change, https://www.l3harrisgeospatial.com/docs/ImageChange.html, [Accessed 09 September 2022].
  • Liu G., Guo H., Perski Z., Fan J., Sousa J.J., Yan S., Tang P., (2019), Landslide movement monitoring with ALOS-2 SAR data, IOP Conf. Series: Earth and Environmental Science, 227, 062015. doi: 10.1088/1755-1315/227/6/062015.
  • Lodhi V., Chakravarty D., Mitra P., (2018), A framework for region based quantitative mapping using hybrid constrained PSO based approach, IOP Conf. Series: Earth and Environmental Science, 169, 012079. doi: 10.1088/1755-1315/169/1/012079.
  • Ma Y., Chen F., Liu J., He Y., Duan J., Li X., (2016), An Automatic Procedure for Early Disaster Change Mapping Based on Optical Remote Sensing, Remote Sensing, 8(4), 272. doi:10.3390/rs8040272.
  • Otsu N., (1979), A threshold selection algorithm from gray-level histograms, IEEE Transaction on Systems, Man and Cybernetics, Vol. SMC-9, No.1, 62–66.
  • Qin Y., Lu P., Li Z., (2018), Landslide Inventory Mapping from Bitemporal 10 m Sentinel-2 Images Using Change Detection Based Markov Random Field, ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XLII-3, 1447-1452.
  • Rai P.K., Mohan K., Kumra V.K., (2014), Landslide Hazard and Its Mapping Using Remote Sensing and GIS, Journal of Scientific Research, 58(1), 1-13.
  • Roemer H., Kaiser G., Sterr H., Ludwig R., (2010), Using remote sensing to assess tsunami-induced impacts on coastal forest ecosystems at the Andaman Sea coast of Thailand, Nat. Hazards Earth Syst. Sci. 10, 729–745.
  • Stumpf A., Malet J.-P., Delacourt C., (2017), Correlation of satellite image time-series for the detection and monitoring of slow-moving landslides, Remote Sensing of Environment 189, 40–55.
  • SYGM, (2019), Batı Karadeniz Havzası Taşkın Yönetim Planı, Su Yönetimi Genel Müdürlüğü (SYGM), Ankara, 43ss. (in Turkish).
  • Tajudin N., Ya’acob N., Ali D.M., Adnan N.A., (2020), Land Cover Change Detection Analysis for Landslide Monitoring Using SPOT-5 Satellite Images, Journal of Electrical and Electronics Systems Research, 17, 80-84.
  • Theilen-Willige B., (2010), Detection of local site conditions influencing earthquake shaking and secondary effects in Southwest-Haiti using remote sensing and GIS-methods, Nat. Hazards Earth Syst. Sci. 10, 1183–1196.
  • USGS, (2013), Landsat 8, https://pubs.usgs.gov/fs/2013/3060/, [Accessed 25 April 2022].
  • USGS, (2016), Landsat—Earth observation satellites, https://doi.org/10.3133/fs20153081, [Accessed 25 April 2022].
  • USGS, (2022), Landsat 8, https://www.usgs.gov/landsat-missions/landsat-8 [Accessed 08 April 2022].
  • van Leeuwen B., Tobak Z., Kovács F., Sipos G., (2017), Towards a Continuous Inland Excess Water Flood Monitoring System Based on Remote Sensing Data, Journal of Environmental Geography, 10 (3–4), 9–15.
  • van Westen C.J., (2000), Remote sensing for natural disaster management, International archives of photogrammetry and remote sensing, Vol. XXXIII, Part B7, 1609-1617.
  • Varangaonkar P., Rode S.V., (2019), Methods of Landslide Detection using GIS and Remote Sensing Images, International Journal of Engineering and Advanced Technology, 9(2), 2121-2125.
  • Womble J.A., Wood R.L., Mohammadi M.E., (2018), Multi-Scale Remote Sensing of Tornado Effects, Frontiers in Built Environment, 4, 66. doi: 10.3389/fbuil.2018.00066.

Details

Primary Language English
Subjects Geosciences, Multidisciplinary
Published Date Ocak 2023
Journal Section Research Articles
Authors

Şerife Pınar GÜVEL> (Primary Author)
DSİ 6. BÖLGE MÜDÜRLÜĞÜ, BİLGİ TEKNOLOJİLERİ ŞUBE MÜDÜRLÜĞÜ
0000-0002-3175-5938
Türkiye


Mehmet Ali AKGÜL>
DSİ 6. BÖLGE MÜDÜRLÜĞÜ, BİLGİ TEKNOLOJİLERİ ŞUBE MÜDÜRLÜĞÜ
0000-0002-5517-9576
Türkiye


Mehveş Feyza AKKOYUNLU>
BOĞAZİÇİ ÜNİVERSİTESİ
0000-0002-4966-8218
Türkiye

Publication Date January 27, 2023
Published in Issue Year 2023, Volume 9Issue 1

Cite

Bibtex @research article { dacd1152670, journal = {Doğal Afetler ve Çevre Dergisi}, eissn = {2528-9640}, address = {}, publisher = {Artvin Çoruh University}, year = {2023}, volume = {9}, number = {1}, pages = {81 - 89}, doi = {10.21324/dacd.1152670}, title = {Monitoring and Evaluation of 2015 Devrek Zonguldak Landslide within the scope of Flood Risk Assessment by Landsat-8 Satellite Data}, key = {cite}, author = {Güvel, Şerife Pınar and Akgül, Mehmet Ali and Akkoyunlu, Mehveş Feyza} }
APA Güvel, Ş. P. , Akgül, M. A. & Akkoyunlu, M. F. (2023). Monitoring and Evaluation of 2015 Devrek Zonguldak Landslide within the scope of Flood Risk Assessment by Landsat-8 Satellite Data . Doğal Afetler ve Çevre Dergisi , 9 (1) , 81-89 . DOI: 10.21324/dacd.1152670
MLA Güvel, Ş. P. , Akgül, M. A. , Akkoyunlu, M. F. "Monitoring and Evaluation of 2015 Devrek Zonguldak Landslide within the scope of Flood Risk Assessment by Landsat-8 Satellite Data" . Doğal Afetler ve Çevre Dergisi 9 (2023 ): 81-89 <http://dacd.artvin.edu.tr/en/pub/issue/75518/1152670>
Chicago Güvel, Ş. P. , Akgül, M. A. , Akkoyunlu, M. F. "Monitoring and Evaluation of 2015 Devrek Zonguldak Landslide within the scope of Flood Risk Assessment by Landsat-8 Satellite Data". Doğal Afetler ve Çevre Dergisi 9 (2023 ): 81-89
RIS TY - JOUR T1 - Monitoring and Evaluation of 2015 Devrek Zonguldak Landslide within the scope of Flood Risk Assessment by Landsat-8 Satellite Data AU - Şerife PınarGüvel, Mehmet AliAkgül, Mehveş FeyzaAkkoyunlu Y1 - 2023 PY - 2023 N1 - doi: 10.21324/dacd.1152670 DO - 10.21324/dacd.1152670 T2 - Doğal Afetler ve Çevre Dergisi JF - Journal JO - JOR SP - 81 EP - 89 VL - 9 IS - 1 SN - -2528-9640 M3 - doi: 10.21324/dacd.1152670 UR - https://doi.org/10.21324/dacd.1152670 Y2 - 2022 ER -
EndNote %0 Journal of Natural Hazards and Environment Monitoring and Evaluation of 2015 Devrek Zonguldak Landslide within the scope of Flood Risk Assessment by Landsat-8 Satellite Data %A Şerife Pınar Güvel , Mehmet Ali Akgül , Mehveş Feyza Akkoyunlu %T Monitoring and Evaluation of 2015 Devrek Zonguldak Landslide within the scope of Flood Risk Assessment by Landsat-8 Satellite Data %D 2023 %J Doğal Afetler ve Çevre Dergisi %P -2528-9640 %V 9 %N 1 %R doi: 10.21324/dacd.1152670 %U 10.21324/dacd.1152670
ISNAD Güvel, Şerife Pınar , Akgül, Mehmet Ali , Akkoyunlu, Mehveş Feyza . "Monitoring and Evaluation of 2015 Devrek Zonguldak Landslide within the scope of Flood Risk Assessment by Landsat-8 Satellite Data". Doğal Afetler ve Çevre Dergisi 9 / 1 (January 2023): 81-89 . https://doi.org/10.21324/dacd.1152670
AMA Güvel Ş. P. , Akgül M. A. , Akkoyunlu M. F. Monitoring and Evaluation of 2015 Devrek Zonguldak Landslide within the scope of Flood Risk Assessment by Landsat-8 Satellite Data. J Nat Haz Environ. 2023; 9(1): 81-89.
Vancouver Güvel Ş. P. , Akgül M. A. , Akkoyunlu M. F. Monitoring and Evaluation of 2015 Devrek Zonguldak Landslide within the scope of Flood Risk Assessment by Landsat-8 Satellite Data. Doğal Afetler ve Çevre Dergisi. 2023; 9(1): 81-89.
IEEE Ş. P. Güvel , M. A. Akgül and M. F. Akkoyunlu , "Monitoring and Evaluation of 2015 Devrek Zonguldak Landslide within the scope of Flood Risk Assessment by Landsat-8 Satellite Data", Doğal Afetler ve Çevre Dergisi, vol. 9, no. 1, pp. 81-89, Jan. 2023, doi:10.21324/dacd.1152670