Research Article
BibTex RIS Cite

Biyopolimer Katkılı Geosentetik Kil Örtülerde İçsel Erozyon ile Permitivite Tayini

Year 2023, Volume: 9 Issue: 1, 181 - 190, 27.01.2023
https://doi.org/10.21324/dacd.1175637

Abstract

Geosentetik kil örtü (GKÖ), düşük hidrolik iletkenliği sayesinde tatlı su rezervuarlarında kaplama malzemesi olarak kullanılabilmektedir. GKÖ üzerinde birikebilecek yüksek seviyedeki su, GKÖ içerisindeki bentonitin geotekstillerin arasından sıyrılarak ani hidrolik iletkenlik artışıyla malzemenin kullanılamaz hale gelmesine neden olabilir. Bu etkileşime içsel erozyon denilmektedir. Bu çalışmada GKÖ’nün bentonit bileşenine sırasıyla ağırlıkça %0.25, 0.5, 1, 2, 5 ve 10 oranlarında kitosan ile Na karboksimetil selüloz biyopolimerleri eklenerek üç eksenli hidrolik iletkenlik deneyleri yapılmıştır. GKÖ içerisinde Na ve Ca içerikli iki farklı bentonit kullanılmış olup içsel erozyonu gözlemleyebilmek için GKÖ’ler, dane boyutu 37.5 mm olan iri daneli yuvarlak çakılların üzerine serilerek yüksek hidrolik yükler altında test edilmişlerdir. Bu koşul, karşılaşılabilecek en kötü senaryolardan birini temsil etmektedir. Deney sonuçlarına göre 10 m’lik hidrolik yük altında test edilen bütün GKÖ’lerde içsel erozyon gözlemlenmiştir. Ayrıca içsel erozyondan hemen önce ölçülen permitivite değerleri karşılaştırılarak kullanılan biyopolimerlerin, GKÖ’lerin hidrolik performansını ne ölçüde değiştirdiği araştırılmıştır. Sonuçlara göre GKÖ’lerdeki bentonite %1 kitosan ve %2 selüloz eklenmesi, GKÖ’lerin permitivitesini 2 mertebeden daha yüksek oranda azaltmıştır. Böylelikle çevre dostu, organik katkı malzemesi olan iki farklı biyopolimerin çevre geotekniği uygulamalarında kaplama malzemesinin hidrolik iletkenliğini azaltmasına bağlı olarak bariyer amaçlı kullanımı teşvik edilebilecektir.

References

  • Alsanad A., (2011), Novel biopolymer treatment for wind induced soil erosion, Doktora Tezi, Arizona State University, USA.
  • Aminpour M., O’Kelly B.C., (2015), Applications of biopolymers in dam construction and operation activities, Proceedings of the Second International Dam World Conference (DW2015), LNEC, (Pina C., Portela E., Caldeira L., Batista A., Dias I., Santos R., Ed.), 21-24 April, Lisbon, Portugal, ss. 937-946.
  • ASTM D5887, (2009), Standard test method for measurement of index flux through saturated geosynthetic clay liner specimens using a flexible-wall permeameter, ASTM International, West Conshohocken, PA. doi: 10.1520/D5887_D5887M-22.
  • Bouazza A., (2002). Geosynthetic clay liners, Geotextiles and Geomembranes, 20 (2002), 3-17.
  • Chang, I., Cho, G.C. 2012. Strengthening of Korean Residual Soil with β-1, 3/1, 6-Glucan Biopolymer, Constuction and Building Materials, 30, 30–35.
  • Cho, G.C., ve Chang, I. (2018). Cementless Soil Stabilizer – Biopolymer, The 2018 World Conference on Advances in Civil, Environmental & Materials Research (ACEM18), 27 - 31 August, Songdo Convensia, Incheon, Korea.
  • De Camillis M., Di Emidio G., Bezuijen A., Verastegui-Flores R.D., (2016). Hydraulic conductivity and swelling ability of a polymer modified bentonite subjected to wet-dry cycles in seawater, Geotextiles and Geomembranes, 44(5), 739-747.
  • Di Emidio G., Mazzieri F., Verastegui-Flores R.D., Van Impe W., Bezuijen A., (2015), Polymer-treated bentonite clay for chemical-resistant geosynthetic clay liners, Geosynthetics International, 22(1), 125-137.
  • Fan R.D., Reddy K.R., Yang Y.L., Du Y.J., (2020), Index properties, hydraulic conductivity and contaminant-compatibility of CMC-treated sodium activated calcium bentonite, International Journal of Environmental Research and Public Health, 17(1863), 1-18.
  • Fox P.J., De Battista D.J., Mast D.G., (2000), Hydraulic performance of geosynthetic clay liners under gravel cover soils, Geotextiles and Geomembranes, 18(2-4), 179–201.
  • Garcia M.A., Rodriguez M., Castro C., de la Paz N., (2020), Water vapor permeability of chitosan/zeolite composite films as affected by biopolymer and zeolite microparticle concentrations, Journal of Packaging Technology and Research, 4(2), 157-169.
  • Geng W., Likos W.J., Benson C.H., (2016), Viscosity of polymer-modified bentonite as a hydraulic performance index, Geo-Chicago 2016, GSP 271, ss.498–507.
  • Gleason M.H., Daniel D.H., Eykholt G.R., (1997), Calcium and sodium bentonite for hydraulic containment applications, Journal of Geotechnical and Geoenvironmental Engineering, 123(5), 438–445.
  • Güler E., Özhan H.O., Karaoğlu S., (2018), Hydraulic performance of anionic polymer-treated bentonite-granular soil mixtures, Applied Clay Science, 157, 139–147.
  • Hataf N., Ghadir P., Ranjbar N., (2018), Investigation of soil stabilization using chitosan biopolymer, Journal of Cleaner Production, 170, 1493-1500.
  • Hosney M.S.H, (2014), Performance of geosynthetic clay liners in cover, subsurface barrier and basal liner applications, Doktora Tezi, Queen’s University, Ontario, Canada.
  • Katsumi T., Ishimori H., Ogawa A., Maruyama S., Fukagawa R., (2008), Effects of water content distribution on hydraulic conductivity of prehydrated GCLs against calcium chloride solutions, Soils and Foundations, 48(3), 407-417.
  • Katsumi T., Ogawa A., Fukagawa R., (2004), Effects of prehydration on hydraulic performance of geosynthetic clay liners permeated with inorganic chemical solutions, Proceedings of Asian 4th Regional Conference on Geosynthetics (GeoAsia 2004), 21-23 June, Seoul, South Korea, ss.937-944.
  • Khachatoorian R., Petrisor I.G., Kwan C.C., Yen T.F., (2003), Biopolymer plugging effect: laboratory-pressurized pumping flow studies, Journal of Petroleum Science and Engineering, 38, 13-21.
  • Kumar M.N.R., (2000), A review of chitin and chitosan applications, Reactive and Functional Polymers, 46(1), 1-27.
  • Lam C., Jefferis S.A., (2014), The use of polymer solutions for deep excavations: Lessons from far eastern experience, HKIE Transactions, 21(4), 262–271.
  • Lam C., Jefferis S.A., (2017), Polymer support fluids in civil engineering, ICE Publishing, London, 312ss.
  • Mitchell J.K., Santamarina J.C., (2005), Biological considerations in geotechnical engineering, Journal of Geotechnical and Geoenvironmental Engineering, 131(10), 1222–1233.
  • Orts W.J., Sojka R.E., Glenn G.M., Gross R.A., (1999), Preventing soil erosion with polymer additives, Polymer News, 24(12), 406-413.
  • Özhan H.O., (2011), Internal erosion of geosynthetic clay liners under high hydraulic heads, PhD Thesis, Bogazici University, Istanbul, Turkey.
  • Özhan H.O., Güler E., (2013), Use of perforated base pedestal to simulate the gravel subbase in evaluating the internal erosion of geosynthetic clay liners, Geotechnical Testing Journal, 36(3), 418–428.
  • Özhan H.O., Güler E., (2016), Factors affecting failure by internal erosion of geosynthetic clay liners used in fresh water reservoirs, Environmental & Engineering Geoscience, 22(2), 157-169.
  • Özhan H.O., (2018a), Effects of temperature increase in 0.5 M MGKÖ2 solution on hydraulic capability of anionic polymer-treated geosynthetic clay liners used as barriers, Journal of Environmental Engineering, 144(10), doi:10.1061/(ASCE)EE.1943-7870.0001451.
  • Özhan H.O., (2018b), Katyonik polimer katkılı geosentetik kil örtülerin farklı tuz çözeltileri ile etkileşimi, Doğal Afetler ve Çevre Dergisi, 4(2), 171-181.
  • Reddy D.V.S.S., Kowshik K., Kishor M.J., Chittaranajan M., Sravani E., (2018), Investigation of chitosan bio-polymer effect on the geotechnical properties of an expansive soil, Proceedings of International Conference on Recent Trends in Engineering Materials, Management and Sciences, ICRTEMMS-2018, 25-27 October, ss.1-7.
  • Rowe R.K., Orsini C., (2003), Effect of GKÖ and subgrade type on internal erosion in GKÖs under high gradients, Geotextiles and Geomembranes, 21(2003), 1–24.
  • Scalia J., Benson C.H., Bohnhoff G.L., Edil T.B., Shackelford C.D., (2014). Long-term hydraulic conductivity of a bentonite-polymer composite permeated with aggressive inorganic solutions, Journal of Geotechnical and Geoenvironmental Engineering, 140(3) 04013025. doi:10. 1061/(ASCE)GT.1943-5606.0001040.
  • Shan H.Y., Chen R.H., (2003). Effect of gravel subgrade on hydraulic performance of geosynthetic clay liner, Geotextiles and Geomembranes, 21(6), 339–354.
  • Shen S.Q., Du Y.J., Wang F., Ren W.W., (2016), Hydraulic conductivity of polymer modified bentonite filter cakes in calcium chloride solutions, Geo-Chicago 2016, GSP 271, ss.428–437.
  • Taytak B., Pulat H.F., Yükselen-Aksoy Y., (2012), Improvement of engineering properties of soils by biopolymer additives, 3rd International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, 28-30 June, Near East University, Nicosia, North Cyprus, ss. 851-856.
  • Tian K., Likos W.J., Benson C.H., (2019), Polymer elution and hydraulic conductivity of bentonite–polymer composite geosynthetic clay liners, Journal of Geotechnical and Geoenvironmental Engineering, 145(10), 04019071. doi: 10.1061/(ASCE)GT.1943-5606.0002097.
  • Wan M.-W., Petrisor I.G., Lai H.-T., Kim D., Yen T.F., (2004), Copper adsorption through chitosan immobilized on sand to demonstrate the feasibility for in-situ soil decontamination, Carbohydrate Polymers, 55(3), 249-254.
  • Zohary T., Ostrovsky I., (2010), Ecological impacts of excessive water level fluctuations in stratified freshwater lakes, Inland Waters, 1, 47–59.

Determination of Internal Erosion and Permittivity of Biopolymer-Added Geosynthetic Clay Liners

Year 2023, Volume: 9 Issue: 1, 181 - 190, 27.01.2023
https://doi.org/10.21324/dacd.1175637

Abstract

Geosynthetic clay liner (GCL) can be used as a lining material in freshwater reservoirs due to its very low hydraulic conductivity. The high amount of water that can be collected on top of a GCL might force the bentonite in the GCL to be extruded out of the geotextiles and as a result, the sudden increase in the hydraulic conductivity might cause the GCL to loose its hydraulic capability. This interaction is defined as internal erosion. In this study, triaxial permeability tests were conducted on chitosan and Na carboxymethyl cellulose-added GCLs. These two biopolymers were added to the bentonite component of the GCLs with a content of 0.25, 0.5, 1, 2, 5 and 10% by dry weight respectively. Na and Ca bentonites were used in the GCLs and the GCLs that were placed over a rounded coarse gravel with a grain size of 37.5 mm, were tested at high hydraulic heads in order to observe internal erosion. This condition represents one of the worst-case scenarios. Test results indicated that all of the GCLs experienced internal erosion at a hydraulic head of 10 m. Furthermore, the permittivity values of the GCLs just before internal erosion, were measured and the effects of the biopolymers on the GCL’s hydraulic performance were investigated. According to the test results, 1% chitosan and 2% Na carboxymethyl cellulose addition to the bentonite component of the GCLs resulted in more than 2 orders of magnitude decrease in permittivity. Due to the results of this study, the usage of two different biopolymers that are environmentally friendly organic additives can be encouraged to be used as barriers in geoenvironmental application by decreasing the hydraulic conductivity of the lining material.

References

  • Alsanad A., (2011), Novel biopolymer treatment for wind induced soil erosion, Doktora Tezi, Arizona State University, USA.
  • Aminpour M., O’Kelly B.C., (2015), Applications of biopolymers in dam construction and operation activities, Proceedings of the Second International Dam World Conference (DW2015), LNEC, (Pina C., Portela E., Caldeira L., Batista A., Dias I., Santos R., Ed.), 21-24 April, Lisbon, Portugal, ss. 937-946.
  • ASTM D5887, (2009), Standard test method for measurement of index flux through saturated geosynthetic clay liner specimens using a flexible-wall permeameter, ASTM International, West Conshohocken, PA. doi: 10.1520/D5887_D5887M-22.
  • Bouazza A., (2002). Geosynthetic clay liners, Geotextiles and Geomembranes, 20 (2002), 3-17.
  • Chang, I., Cho, G.C. 2012. Strengthening of Korean Residual Soil with β-1, 3/1, 6-Glucan Biopolymer, Constuction and Building Materials, 30, 30–35.
  • Cho, G.C., ve Chang, I. (2018). Cementless Soil Stabilizer – Biopolymer, The 2018 World Conference on Advances in Civil, Environmental & Materials Research (ACEM18), 27 - 31 August, Songdo Convensia, Incheon, Korea.
  • De Camillis M., Di Emidio G., Bezuijen A., Verastegui-Flores R.D., (2016). Hydraulic conductivity and swelling ability of a polymer modified bentonite subjected to wet-dry cycles in seawater, Geotextiles and Geomembranes, 44(5), 739-747.
  • Di Emidio G., Mazzieri F., Verastegui-Flores R.D., Van Impe W., Bezuijen A., (2015), Polymer-treated bentonite clay for chemical-resistant geosynthetic clay liners, Geosynthetics International, 22(1), 125-137.
  • Fan R.D., Reddy K.R., Yang Y.L., Du Y.J., (2020), Index properties, hydraulic conductivity and contaminant-compatibility of CMC-treated sodium activated calcium bentonite, International Journal of Environmental Research and Public Health, 17(1863), 1-18.
  • Fox P.J., De Battista D.J., Mast D.G., (2000), Hydraulic performance of geosynthetic clay liners under gravel cover soils, Geotextiles and Geomembranes, 18(2-4), 179–201.
  • Garcia M.A., Rodriguez M., Castro C., de la Paz N., (2020), Water vapor permeability of chitosan/zeolite composite films as affected by biopolymer and zeolite microparticle concentrations, Journal of Packaging Technology and Research, 4(2), 157-169.
  • Geng W., Likos W.J., Benson C.H., (2016), Viscosity of polymer-modified bentonite as a hydraulic performance index, Geo-Chicago 2016, GSP 271, ss.498–507.
  • Gleason M.H., Daniel D.H., Eykholt G.R., (1997), Calcium and sodium bentonite for hydraulic containment applications, Journal of Geotechnical and Geoenvironmental Engineering, 123(5), 438–445.
  • Güler E., Özhan H.O., Karaoğlu S., (2018), Hydraulic performance of anionic polymer-treated bentonite-granular soil mixtures, Applied Clay Science, 157, 139–147.
  • Hataf N., Ghadir P., Ranjbar N., (2018), Investigation of soil stabilization using chitosan biopolymer, Journal of Cleaner Production, 170, 1493-1500.
  • Hosney M.S.H, (2014), Performance of geosynthetic clay liners in cover, subsurface barrier and basal liner applications, Doktora Tezi, Queen’s University, Ontario, Canada.
  • Katsumi T., Ishimori H., Ogawa A., Maruyama S., Fukagawa R., (2008), Effects of water content distribution on hydraulic conductivity of prehydrated GCLs against calcium chloride solutions, Soils and Foundations, 48(3), 407-417.
  • Katsumi T., Ogawa A., Fukagawa R., (2004), Effects of prehydration on hydraulic performance of geosynthetic clay liners permeated with inorganic chemical solutions, Proceedings of Asian 4th Regional Conference on Geosynthetics (GeoAsia 2004), 21-23 June, Seoul, South Korea, ss.937-944.
  • Khachatoorian R., Petrisor I.G., Kwan C.C., Yen T.F., (2003), Biopolymer plugging effect: laboratory-pressurized pumping flow studies, Journal of Petroleum Science and Engineering, 38, 13-21.
  • Kumar M.N.R., (2000), A review of chitin and chitosan applications, Reactive and Functional Polymers, 46(1), 1-27.
  • Lam C., Jefferis S.A., (2014), The use of polymer solutions for deep excavations: Lessons from far eastern experience, HKIE Transactions, 21(4), 262–271.
  • Lam C., Jefferis S.A., (2017), Polymer support fluids in civil engineering, ICE Publishing, London, 312ss.
  • Mitchell J.K., Santamarina J.C., (2005), Biological considerations in geotechnical engineering, Journal of Geotechnical and Geoenvironmental Engineering, 131(10), 1222–1233.
  • Orts W.J., Sojka R.E., Glenn G.M., Gross R.A., (1999), Preventing soil erosion with polymer additives, Polymer News, 24(12), 406-413.
  • Özhan H.O., (2011), Internal erosion of geosynthetic clay liners under high hydraulic heads, PhD Thesis, Bogazici University, Istanbul, Turkey.
  • Özhan H.O., Güler E., (2013), Use of perforated base pedestal to simulate the gravel subbase in evaluating the internal erosion of geosynthetic clay liners, Geotechnical Testing Journal, 36(3), 418–428.
  • Özhan H.O., Güler E., (2016), Factors affecting failure by internal erosion of geosynthetic clay liners used in fresh water reservoirs, Environmental & Engineering Geoscience, 22(2), 157-169.
  • Özhan H.O., (2018a), Effects of temperature increase in 0.5 M MGKÖ2 solution on hydraulic capability of anionic polymer-treated geosynthetic clay liners used as barriers, Journal of Environmental Engineering, 144(10), doi:10.1061/(ASCE)EE.1943-7870.0001451.
  • Özhan H.O., (2018b), Katyonik polimer katkılı geosentetik kil örtülerin farklı tuz çözeltileri ile etkileşimi, Doğal Afetler ve Çevre Dergisi, 4(2), 171-181.
  • Reddy D.V.S.S., Kowshik K., Kishor M.J., Chittaranajan M., Sravani E., (2018), Investigation of chitosan bio-polymer effect on the geotechnical properties of an expansive soil, Proceedings of International Conference on Recent Trends in Engineering Materials, Management and Sciences, ICRTEMMS-2018, 25-27 October, ss.1-7.
  • Rowe R.K., Orsini C., (2003), Effect of GKÖ and subgrade type on internal erosion in GKÖs under high gradients, Geotextiles and Geomembranes, 21(2003), 1–24.
  • Scalia J., Benson C.H., Bohnhoff G.L., Edil T.B., Shackelford C.D., (2014). Long-term hydraulic conductivity of a bentonite-polymer composite permeated with aggressive inorganic solutions, Journal of Geotechnical and Geoenvironmental Engineering, 140(3) 04013025. doi:10. 1061/(ASCE)GT.1943-5606.0001040.
  • Shan H.Y., Chen R.H., (2003). Effect of gravel subgrade on hydraulic performance of geosynthetic clay liner, Geotextiles and Geomembranes, 21(6), 339–354.
  • Shen S.Q., Du Y.J., Wang F., Ren W.W., (2016), Hydraulic conductivity of polymer modified bentonite filter cakes in calcium chloride solutions, Geo-Chicago 2016, GSP 271, ss.428–437.
  • Taytak B., Pulat H.F., Yükselen-Aksoy Y., (2012), Improvement of engineering properties of soils by biopolymer additives, 3rd International Conference on New Developments in Soil Mechanics and Geotechnical Engineering, 28-30 June, Near East University, Nicosia, North Cyprus, ss. 851-856.
  • Tian K., Likos W.J., Benson C.H., (2019), Polymer elution and hydraulic conductivity of bentonite–polymer composite geosynthetic clay liners, Journal of Geotechnical and Geoenvironmental Engineering, 145(10), 04019071. doi: 10.1061/(ASCE)GT.1943-5606.0002097.
  • Wan M.-W., Petrisor I.G., Lai H.-T., Kim D., Yen T.F., (2004), Copper adsorption through chitosan immobilized on sand to demonstrate the feasibility for in-situ soil decontamination, Carbohydrate Polymers, 55(3), 249-254.
  • Zohary T., Ostrovsky I., (2010), Ecological impacts of excessive water level fluctuations in stratified freshwater lakes, Inland Waters, 1, 47–59.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Engineering, Environmental Engineering, Geological Sciences and Engineering (Other)
Journal Section Research Articles
Authors

Hakkı Oral Özhan 0000-0002-4620-5568

Publication Date January 27, 2023
Submission Date September 15, 2022
Acceptance Date January 21, 2023
Published in Issue Year 2023Volume: 9 Issue: 1

Cite

APA Özhan, H. O. (2023). Biyopolimer Katkılı Geosentetik Kil Örtülerde İçsel Erozyon ile Permitivite Tayini. Doğal Afetler Ve Çevre Dergisi, 9(1), 181-190. https://doi.org/10.21324/dacd.1175637
AMA Özhan HO. Biyopolimer Katkılı Geosentetik Kil Örtülerde İçsel Erozyon ile Permitivite Tayini. J Nat Haz Environ. January 2023;9(1):181-190. doi:10.21324/dacd.1175637
Chicago Özhan, Hakkı Oral. “Biyopolimer Katkılı Geosentetik Kil Örtülerde İçsel Erozyon Ile Permitivite Tayini”. Doğal Afetler Ve Çevre Dergisi 9, no. 1 (January 2023): 181-90. https://doi.org/10.21324/dacd.1175637.
EndNote Özhan HO (January 1, 2023) Biyopolimer Katkılı Geosentetik Kil Örtülerde İçsel Erozyon ile Permitivite Tayini. Doğal Afetler ve Çevre Dergisi 9 1 181–190.
IEEE H. O. Özhan, “Biyopolimer Katkılı Geosentetik Kil Örtülerde İçsel Erozyon ile Permitivite Tayini”, J Nat Haz Environ, vol. 9, no. 1, pp. 181–190, 2023, doi: 10.21324/dacd.1175637.
ISNAD Özhan, Hakkı Oral. “Biyopolimer Katkılı Geosentetik Kil Örtülerde İçsel Erozyon Ile Permitivite Tayini”. Doğal Afetler ve Çevre Dergisi 9/1 (January 2023), 181-190. https://doi.org/10.21324/dacd.1175637.
JAMA Özhan HO. Biyopolimer Katkılı Geosentetik Kil Örtülerde İçsel Erozyon ile Permitivite Tayini. J Nat Haz Environ. 2023;9:181–190.
MLA Özhan, Hakkı Oral. “Biyopolimer Katkılı Geosentetik Kil Örtülerde İçsel Erozyon Ile Permitivite Tayini”. Doğal Afetler Ve Çevre Dergisi, vol. 9, no. 1, 2023, pp. 181-90, doi:10.21324/dacd.1175637.
Vancouver Özhan HO. Biyopolimer Katkılı Geosentetik Kil Örtülerde İçsel Erozyon ile Permitivite Tayini. J Nat Haz Environ. 2023;9(1):181-90.