Research Article
BibTex RIS Cite

A Preliminary Study to Evaluate Recovery in Environmental Microplastic Analysis

Year 2024, Volume: 10 Issue: 1, 155 - 166, 28.01.2024
https://doi.org/10.21324/dacd.1279109

Abstract

Microplastics (MPs) have attracted attention as a global concern due to their physicochemical properties, structural components, role as vectors for pollutants and potential health impacts. In studies focusing on the occurrence, levels, and distribution of MPs, there is a need for recovery studies since certified reference materials or standard methods have not yet been established for quality assurance in analyses. In this study, it was aimed to evaluate the recovery efficiency of MP analyses in soil and air matrices using an analyte addition approach. Recovery studies were carried out by soil samples taken from the garden of Eskişehir Technical University campus and dust samples taken from the indoor environment of the building in the size range of 1-5 mm with the addition of polyethylene (PE) type (<1000 µm) microplastics on a number or mass basis. MPs in the samples, which underwent a series of experimental processes, such as density separation (NaCl) and organic removal (30% H2O2), were later visually inspected with a stereo microscope and then identified with an Attenuated Total Reflectance (ATR)-Fourier Transform Infrared (FTIR) spectrometer. Polyethylene, Tencel, and Polyacetylene (>70% matching rate) type MPs were detected in soil and dust samples, mainly in the form of fibers and fragments, with sizes ranging between 57.0-4989 µm and 36.2-2636 µm, with an average of 1.43±0.574 MP/g and 5500±2531 MP/g, respectively. In the recovery studies, an average recovery rate of 75% was achieved in trials where PE was added to the samples by mass and 100% in trials where PE was added by number. The recovery studies, which were also evaluated in terms of the factors affecting MP analysis, were examined in the context of current literature, and recommendations were made.

References

  • Abbasi, S., Rezaei, M., Ahmadi, F., & Turner, A. (2022). Atmospheric transport of microplastics during a dust storm. Chemosphere, 292, Article 133456. https://doi.org/10.1016/j.chemosphere.2021.133456
  • Amato-Lourenço, L. F., dos Santos Galvão, L., de Weger, L. A., Hiemstra, P. S., Vijver, M. G., & Mauad, T. (2020). An emerging class of air pollutants: Potential effects of microplastics to respiratory human health? Science of the Total Environment, 749, Article 141676. https://doi.org/10.1016/j.scitotenv.2020.141676
  • Bao, R., Fu, D., Fan, Z., Peng, X., & Peng, L. (2022). Aging of microplastics and their role as vector for copper in aqueous solution. Gondwana Research, 108, 81–90. https://doi.org/10.1016/j.gr.2021.12.002
  • Bhat, M.A. (2023a). Identification and characterization of microplastics in indoor environment [Doktora tezi, Eskişehir Teknik Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Bhat, M. A., Eraslan F. N., Gaga E. O., & Gedik, K. (2023b). Scientometric analysis of microplastics across the globe. In M. Vithanage & M. N. V. Prasad (Eds.), Microplastics in the Ecosphere: Air, Water, Soil, and Food (pp. 1-13), John Wiley & Sons Ltd.
  • Bhat, M. A., Eraslan F. N., Gedik K., & Gaga, E. O. (2022a). Impact of textile product emissions: toxicological considerations in assessing indoor air quality and human health. In J. A. Malik & S. Marathe (Eds.)., Ecological and Health Effects of Building Materials (pp. 505-541), Springer Nature.
  • Bhat, M. A., Gedik K., & Gaga E. O., (2022b). Environmental toxicity of emerging micro and nanoplastics: a lesson learned from nanomaterials. In A. H. Dar & G. A. Nayik (Eds.), Nanotechnology Interventions in Food Packaging and Shelf Life (pp. 311-338), Taylor & Francis (CRC Press).
  • Bhat, M. A., Gedik, K., & Gaga, E. O. (2022). Atmospheric micro (nano) plastics: future growing concerns for human health. Air Quality, Atmosphere & Health, 16(2), 233–262. https://doi.org/10.1007/s11869-022-01272-2
  • Büks, F., Kayser, G., Zieger, A., Lang, F., & Kaupenjohann, M. (2021). Particles under stress: ultrasonication causes size and recovery rate artifacts with soil-derived POM but not with microplastics. Biogeosciences, 18(1), 159–167. https://doi.org/10.5194/bg-18-159-2021
  • Chang, X., Xue, Y., Li, J., Zou, L., & Tang, M. (2019). Potential health impact of environmental micro‐ and nanoplastics pollution. Journal of Applied Toxicology, 40(1), 4–15. https://doi.org/10.1002/jat.3915
  • Chen, Y., Li, X., Zhang, X., Zhang, Y., Gao, W., Wang, R., & He, D. (2022). Air conditioner filters become sinks and sources of indoor microplastics fibers. Environmental Pollution, 292, Article 118465. https://doi.org/10.1016/j.envpol.2021.118465
  • Corradini, F., Meza, P., Eguiluz, R., Casado, F., Huerta-Lwanga, E., & Geissen, V. (2019). Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Science of the Total Environment, 671, 411–420. https://doi.org/10.1016/j.scitotenv.2019.03.368
  • Crawford, C. B., & Quinn, B. (2017). Microplastic Pollutants (1st ed.). Elsevier.
  • Cui, T., Shi, W., Wang, H., & Lihui, A. (2022). Standardizing microplastics used for establishing recovery efficiency when assessing microplastics in environmental samples. Science of the Total Environment, 827, Article 154323. https://doi.org/10.1016/j.scitotenv.2022.154323
  • Dagani, R. (1981). Organic battery uses polyacetylene electrodes. Chemical and Engineering News, 59, 39–40.
  • Devrim, G. (2019). Farklı liflerden üretilmiş kumaşların kullanım ve biyobozunurluk performansının incelenmesi, [Yüksek lisans tezi, Dokuz Eylül Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Dimante-Deimantovica, I., Suhareva, N., Barone, M., Putna-Nimane, I., & Aigars, J. (2022). Hide-and-seek: Threshold values and contribution towards better understanding of recovery rate in microplastic research. MethodsX, 9, Article 101603. https://doi.org/10.1016/j.mex.2021.101603
  • Dorau, K., Hoppe, M., Rückamp, D., Köser, J., Scheeder, G., Scholz, K., & Fries, E. (2023). Status quo of operation procedures for soil sampling to analyze microplastics. Microplastics and Nanoplastics, 3(1), Article 15. https://doi.org/10.1186/s43591-023-00063-5
  • Dris, R., Gasperi, J., Mirande, C., Mandin, C., Guerrouache, M., Langlois, V., & Tassin, B. (2017). A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environmental Pollution, 221, 453–458. https://doi.org/10.1016/j.envpol.2016.12.013
  • Ebrahimi, P., Abbasi, S., Pashaei, R., Bogusz, A., & Oleszczuk, P. (2022). Investigating impact of physicochemical properties of microplastics on human health: A short bibliometric analysis and review. Chemosphere, 289, Article 133146. https://doi.org/10.1016/j.chemosphere.2021.133146
  • Forster, N. A., Wilson, S. C., & Tighe, M. K. (2022). Examining sampling protocols for microplastics on recreational trails. Science of the Total Environment, 818, Article 151813. https://doi.org/10.1016/j.scitotenv.2021.151813
  • Gabriel, A. D., Amparado, R. F., Lubguban, A. A., & Bacosa, H. P. (2023). Riverine Microplastic Pollution: Insights from Cagayan de Oro River, Philippines. International Journal of Environmental Research and Public Health, 20(12), Article 6132. https://doi.org/10.3390/ijerph20126132
  • Goswami, P., Vinithkumar, N. V., & Dharani, G. (2020). First evidence of microplastics bioaccumulation by marine organisms in the Port Blair Bay, Andaman Islands. Marine Pollution Bulletin, 155, Article 111163. https://doi.org/10.1016/j.marpolbul.2020.111163
  • Hagelskjær, O., Le Roux, G., Liu, R., Dubreuil, B., Behra, P., & Sonke, J. (2023). The recovery of aerosol-sized microplastics in highly refractory vegetal matrices for identification by automated Raman microspectroscopy. Chemosphere, 328, Article 138487. https://doi.org/10.1016/j.chemosphere.2023.138487
  • Havstad, M. R. (2020). Biodegradable plastics. In T.M. Letcher (Ed.), Plastic Waste and Recycling (pp. 97-129), Academic Press.
  • Hurley, R. R., Lusher, A. L., Olsen, M., & Nizzetto, L. (2018). Validation of a Method for Extracting Microplastics from Complex, Organic-Rich, Environmental Matrices. Environmental Science & Technology, 52(13), 7409–7417. https://doi.org/10.1021/acs.est.8b01517
  • International Standard Organization. (2020). Plastics - Environmental Aspects - State of knowledge and methodologies (ISO/TR 21960:2020). International Standard Organization (ISO). https://www.iso.org/standard/72300.html
  • International Standard Organization. (2023). Principles for the analysis of microplastics present in the environment (ISO 24187:2023). International Standard Organization (ISO). https://www.iso.org/standard/78033.html
  • Jacques, O., & Prosser, R. (2021). A probabilistic risk assessment of microplastics in soil ecosystems. Science of the Total Environment, 757, Article 143987. https://doi.org/10.1016/j.scitotenv.2020.143987
  • Karthik, R., Robin, R., Purvaja, R., Ganguly, D., Anandavelu, I., Raghuraman, R., Hariharan, G., Ramakrishna, A., & Ramesh, R. (2018). Microplastics along the beaches of southeast coast of India. Science of the Total Environment, 645, 1388–1399. https://doi.org/10.1016/j.scitotenv.2018.07.242
  • Kefer, S., Miesbauer, O., & Langowski, H. C. (2021). Environmental microplastic particles vs. engineered plastic microparticles—a comparative review. Polymers, 13(17), Article 2881. https://doi.org/10.3390/polym13172881
  • Kelly, F. J., & Fussell, J. C. (2020). Toxicity of airborne particles—established evidence, knowledge gaps and emerging areas of importance. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 378(2183), Article 20190322. https://doi.org/10.1098/rsta.2019.0322
  • Kershaw, P., Turra, A., & Galgani, F. (2019). Guidelines for the monitoring and assessment of plastic litter in the ocean. United Nations Environment Programme (UNEP). http://www.gesamp.org/site/assets/files/2002/rs99e.pdf
  • Kumkar, P., Gosavi, S. M., Verma, C. R., Pise, M., & Kalous, L. (2021). Big eyes can't see microplastics: Feeding selectivity and eco-morphological adaptations in oral cavity affect microplastic uptake in mud-dwelling amphibious mudskipper fish. Science of The Total Environment, 786, Article 147445. https://doi.org/10.1016/j.scitotenv.2021.147445
  • Liu, M., Lu, S., Song, Y., Lei, L., Hu, J., Lv, W., Zhou, W., Cao, C., Shi, H., Yang, X., & He, D. (2018). Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environmental Pollution, 242, 855–862. https://doi.org/10.1016/j.envpol.2018.07.051
  • Masura, J., Baker, J., Foster, G., & Arthur, C. (2015). Laboratory Methods for the Analysis of Microplastics in the Marine Environment: Recommendations for quantifying synthetic particles in waters and sediments (NOAA Technical Memorandum NOS-OR&R-48). NOAA Marine Debris Division.
  • Nayak, R., Jajpura, L., & Khandual, A. (2023). Traditional fibres for fashion and textiles: Associated problems and future sustainable fibres. In R. Nayak (Ed.), Sustainable Fibres for Fashion and Textile Manufacturing (pp. 3-25), Woodhead Publishing.
  • Nematollahi, M. J., Zarei, F., Keshavarzi, B., Zarei, M., Moore, F., Busquets, R., & Kelly, F. J. (2022). Microplastic occurrence in settled indoor dust in schools. Science of the Total Environment, 807, Article 150984. https://doi.org/10.1016/j.scitotenv.2021.150984
  • O’Brien, S., Rauert, C., Ribeiro, F., Okoffo, E. D., Burrows, S. D., O’Brien, J. W., Wang, X., Wright, S. L., & Thomas, K. V. (2023). There’s something in the air: A review of sources, prevalence and behaviour of microplastics in the atmosphere. Science of the Total Environment, 874, Article 162193. https://doi.org/10.1016/j.scitotenv.2023.162193
  • Pérez-Guevara, F., Roy, P. D., Kutralam-Muniasamy, G., & Shruti, V. (2022). Coverage of microplastic data underreporting and progress toward standardization. Science of the Total Environment, 829, Article 154727. https://doi.org/10.1016/j.scitotenv.2022.154727
  • Prata, J. C., da Costa, J. P., Duarte, A. C., & Rocha-Santos, T. (2019). Methods for sampling and detection of microplastics in water and sediment: A critical review. TrAC Trends in Analytical Chemistry, 110, 150–159. https://doi.org/10.1016/j.trac.2018.10.029
  • Prata, J. C., Castro, J. L., da Costa, J. P., Duarte, A. C., Cerqueira, M., & Rocha-Santos, T. (2020). An easy method for processing and identification of natural and synthetic microfibers and microplastics in indoor and outdoor air. MethodsX, 7, Article 100762. https://doi.org/10.1016/j.mex.2019.11.032
  • Prume, J. A., Gorka, F., & Löder, M. G. (2021). From sieve to microscope: An efficient technique for sample transfer in the process of microplastics’ quantification. MethodsX, 8, Article 101341. https://doi.org/10.1016/j.mex.2021.101341
  • Saha, M., Naik, A., Desai, A., Nanajkar, M., Rathore, C., Kumar, M., & Gupta, P. (2021). Microplastics in seafood as an emerging threat to marine environment: a case study in Goa, west coast of India. Chemosphere, 270, Article 129359. https://doi.org/10.1016/j.chemosphere.2020.129359
  • Scopetani, C., Chelazzi, D., Mikola, J., Leiniö, V., Heikkinen, R., Cincinelli, A., & Pellinen, J. (2020). Olive oil-based method for the extraction, quantification and identification of microplastics in soil and compost samples. Science of the Total Environment, 733, Article 139338. https://doi.org/10.1016/j.scitotenv.2020.139338
  • Seghers, J., Stefaniak, E. A., La Spina, R., Cella, C., Mehn, D., Gilliland, D., Held, A., Jacobsson, U., & Emteborg, H. (2021). Preparation of a reference material for microplastics in water—evaluation of homogeneity. Analytical and Bioanalytical Chemistry, 414(1), 385–397. https://doi.org/10.1007/s00216-021-03198-7
  • Shruti, V., & Kutralam-Muniasamy, G. (2023). Blanks and bias in microplastic research: Implications for future quality assurance. Trends in Environmental Analytical Chemistry, 38, Article e00203. https://doi.org/10.1016/j.teac.2023.e00203
  • Shruti, V., Pérez-Guevara, F., Roy, P. D., & Kutralam-Muniasamy, G. (2022). Analyzing microplastics with Nile Red: Emerging trends, challenges, and prospects. Journal of Hazardous Materials, 423, Article 127171. https://doi.org/10.1016/j.jhazmat.2021.127171
  • Song, S., Cai, L., Liu, Y., Peng, Z., Liu, C., Jiao, H., Li, P., Liu, Q., Yu, M., Zhou, T., Zhang, Q., Hollert, H., Zhao, X., & Jiang, G. (2023). Development of a solubility parameter calculation-based method as a complementary tool to traditional techniques for indoor dust microplastic determination and risk assessment. Journal of Hazardous Materials, 459, Article 132189. https://doi.org/10.1016/j.jhazmat.2023.132189
  • Tant, M. R., Mauritz, K. A., & Wilkes, G. L. (2012). Ionomers: synthesis, structure, properties and applications. Springer Science & Business Media.
  • Tewari, A., Almuhtaram, H., McKie, M. J., & Andrews, R. C. (2022). Microplastics for use in environmental research. Journal of Polymers and the Environment, 30(10), 4320–4332. https://doi.org/10.1007/s10924-022-02519-w
  • Thomas, D., Schütze, B., Heinze, W. M., & Steinmetz, Z. (2020). Sample preparation techniques for the analysis of microplastics in soil—a review. Sustainability, 12(21), Article 9074. https://doi.org/10.3390/su12219074
  • Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W. G., McGonigle, D., & Russell, A. E. (2004). Lost at Sea: Where Is All the Plastic? Science, 304(5672), 838–838. https://doi.org/10.1126/science.1094559
  • Way, C., Hudson, M. D., Williams, I. D., & Langley, G. J. (2022). Evidence of underestimation in microplastic research: A meta-analysis of recovery rate studies. Science of the Total Environment, 805, Article 150227. https://doi.org/10.1016/j.scitotenv.2021.150227
  • Wendt-Potthoff, K., Avellán, T., van Emmerik, T., Hamester, M., Kirschke, S., Kitover, D., & Schmidt, C. (2020). Monitoring plastics in rivers and lakes: Guidelines for the harmonization of methodologies. United Nations Environment Programme. https://wedocs.unep.org/bitstream/handle/20.500.11822/35405/MPRL.pdf
  • Wright, S. L., Gouin, T., Koelmans, A. A., & Scheuermann, L. (2021). Development of screening criteria for microplastic particles in air and atmospheric deposition: critical review and applicability towards assessing human exposure. Microplastics and Nanoplastics, 1(1), Article 6. https://doi.org/10.1186/s43591-021-00006-y
  • Xu, B., Liu, F., Cryder, Z., Huang, D., Lu, Z., He, Y., Wang, H., Lu, Z., Brookes, P. C., Tang, C., Gan, J., & Xu, J. (2020a). Microplastics in the soil environment: Occurrence, risks, interactions and fate – A review. Critical Reviews in Environmental Science and Technology, 50(21), 2175–2222. https://doi.org/10.1080/10643389.2019.1694822
  • Xu, C., Zhang, B., Gu, C., Shen, C., Yin, S., Aamir, M., & Li, F. (2020b). Are we underestimating the sources of microplastic pollution in terrestrial environment? Journal of Hazardous Materials, 400, Article 123228. https://doi.org/10.1016/j.jhazmat.2020.123228
  • Ya-di, Z., Tian-jie, S., Yan-hua, W., & Rui-yuan, W. (2022). Review and future trends of soil microplastics research: visual analysis based on Citespace. Environmental Sciences Europe, 34(1), Article 122. https://doi.org/10.1186/s12302-022-00703-2
  • Yang, H., Yumeng, Y., Yu, Y., Yinglin, H., Fu, B., & Wang, J. (2022). Distribution, sources, migration, influence and analytical methods of microplastics in soil ecosystems. Ecotoxicology and Environmental Safety, 243, Article 114009. https://doi.org/10.1016/j.ecoenv.2022.114009
  • You, X., Wang, S., Li, G., Du, L., & Dong, X. (2022). Microplastics in the soil: A review of distribution, anthropogenic impact, and interaction with soil microorganisms based on meta-analysis. Science of the Total Environment, 832, Article 154975. https://doi.org/10.1016/j.scitotenv.2022.154975
  • Zhang, L., Brostowitz, N. R., Cavicchi, K. A., & Weiss, R. A. (2018). Perspective: Ionomer Research and Applications. Macromolecular Reaction Engineering, 8(2), 81–99. https://doi.org/10.1002/mren.201300181
  • Zhang, Z., Zhao, S., Chen, L., Duan, C., Zhang, X., & Fang, L. (2022). A review of microplastics in soil: Occurrence, analytical methods, combined contamination and risks. Environmental Pollution, 306, Article 119374. https://doi.org/10.1016/j.envpol.2022.119374
  • Zhu, J., Zhang, X., Liao, K., Wu, P., & Jin, H. (2022). Microplastics in dust from different indoor environments. Science of the Total Environment, 833, Article 155256. https://doi.org/10.1016/j.scitotenv.2022.155256

Çevresel Mikroplastik Analizlerindeki Geri Kazanımı Değerlendirmeye Yönelik Bir Ön Çalışma

Year 2024, Volume: 10 Issue: 1, 155 - 166, 28.01.2024
https://doi.org/10.21324/dacd.1279109

Abstract

Mikroplastikler (MP’ler); fizikokimyasal özellikleri, yapısal bileşenleri, kirleticilere yönelik taşıyıcı rolü ve muhtemel sağlık etkileri nedeniyle küresel bir endişe olarak dikkat çekmektedir. MP varlığı, seviyesi ve dağılımına odaklanan araştırmalarda, analizlerdeki kalite güvencesi bağlamında sertifikalı referans malzeme veya standart metot henüz oluşturulamadığından geri kazanım çalışmalarına ihtiyaç duyulmaktadır. Bu çalışmada, toprak ve hava ortamındaki MP analizlerine yönelik geri kazanım verimliliğinin analit ekleme yaklaşımıyla değerlendirilmesi amaçlanmıştır. Geri kazanım çalışmaları, Eskişehir Teknik Üniversitesi kampüsü bahçesinden alınan toprak ve bina iç ortamından alınan toz numunelerinin 1-5 mm boyut aralığında olacak şekilde elenerek sayı veya kütle bazında polietilen (PE) türü (<1000 µm) mikroplastiklerin eklenmesiyle gerçekleştirilmiştir. Sırasıyla, yoğunluk ayrımı (NaCl, 1.2 g/cm3) ve organik giderimi (%30 H2O2) gibi bir dizi deneysel süreçten geçen numunelerdeki muhtemel MP’ler stereo mikroskopla görsel olarak incelenmiş ve sonrasında Zayıflatılmış toplam yansıma (ATR)-Fourier dönüşümlü kızılötesi (FTIR) spektrometresi ile tanımlanmıştır. Toprak ve toz numunelerinde sırasıyla, 57-4989 µm ve 36.2-2636 µm arasında değişen boyutlarda, ortalama 1.43±0.574 adet/g ve 5500±2531 adet/g düzeyinde, yoğun olarak lif ve parça şeklinde, Polietilen, Tencel, Poliasetilen (>%70 eşleşme oranı) türü MP tespit edilmiştir. Geri kazanım çalışmalarında, numunelere kütlece PE eklenen denemelerde ortalama %75, sayıca PE eklenen denemelerde ise %100 geri kazanım oranına ulaşılmıştır. MP analizlerine etki eden faktörler açısından değerlendirmenin de yapıldığı geri kazanım çalışmaları, güncel literatür bağlamında öneriler oluşturularak irdelenmiştir.

Supporting Institution

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)

Thanks

Bu çalışma, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından 121Y142 nolu proje kapsamında desteklenmiştir.

References

  • Abbasi, S., Rezaei, M., Ahmadi, F., & Turner, A. (2022). Atmospheric transport of microplastics during a dust storm. Chemosphere, 292, Article 133456. https://doi.org/10.1016/j.chemosphere.2021.133456
  • Amato-Lourenço, L. F., dos Santos Galvão, L., de Weger, L. A., Hiemstra, P. S., Vijver, M. G., & Mauad, T. (2020). An emerging class of air pollutants: Potential effects of microplastics to respiratory human health? Science of the Total Environment, 749, Article 141676. https://doi.org/10.1016/j.scitotenv.2020.141676
  • Bao, R., Fu, D., Fan, Z., Peng, X., & Peng, L. (2022). Aging of microplastics and their role as vector for copper in aqueous solution. Gondwana Research, 108, 81–90. https://doi.org/10.1016/j.gr.2021.12.002
  • Bhat, M.A. (2023a). Identification and characterization of microplastics in indoor environment [Doktora tezi, Eskişehir Teknik Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Bhat, M. A., Eraslan F. N., Gaga E. O., & Gedik, K. (2023b). Scientometric analysis of microplastics across the globe. In M. Vithanage & M. N. V. Prasad (Eds.), Microplastics in the Ecosphere: Air, Water, Soil, and Food (pp. 1-13), John Wiley & Sons Ltd.
  • Bhat, M. A., Eraslan F. N., Gedik K., & Gaga, E. O. (2022a). Impact of textile product emissions: toxicological considerations in assessing indoor air quality and human health. In J. A. Malik & S. Marathe (Eds.)., Ecological and Health Effects of Building Materials (pp. 505-541), Springer Nature.
  • Bhat, M. A., Gedik K., & Gaga E. O., (2022b). Environmental toxicity of emerging micro and nanoplastics: a lesson learned from nanomaterials. In A. H. Dar & G. A. Nayik (Eds.), Nanotechnology Interventions in Food Packaging and Shelf Life (pp. 311-338), Taylor & Francis (CRC Press).
  • Bhat, M. A., Gedik, K., & Gaga, E. O. (2022). Atmospheric micro (nano) plastics: future growing concerns for human health. Air Quality, Atmosphere & Health, 16(2), 233–262. https://doi.org/10.1007/s11869-022-01272-2
  • Büks, F., Kayser, G., Zieger, A., Lang, F., & Kaupenjohann, M. (2021). Particles under stress: ultrasonication causes size and recovery rate artifacts with soil-derived POM but not with microplastics. Biogeosciences, 18(1), 159–167. https://doi.org/10.5194/bg-18-159-2021
  • Chang, X., Xue, Y., Li, J., Zou, L., & Tang, M. (2019). Potential health impact of environmental micro‐ and nanoplastics pollution. Journal of Applied Toxicology, 40(1), 4–15. https://doi.org/10.1002/jat.3915
  • Chen, Y., Li, X., Zhang, X., Zhang, Y., Gao, W., Wang, R., & He, D. (2022). Air conditioner filters become sinks and sources of indoor microplastics fibers. Environmental Pollution, 292, Article 118465. https://doi.org/10.1016/j.envpol.2021.118465
  • Corradini, F., Meza, P., Eguiluz, R., Casado, F., Huerta-Lwanga, E., & Geissen, V. (2019). Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Science of the Total Environment, 671, 411–420. https://doi.org/10.1016/j.scitotenv.2019.03.368
  • Crawford, C. B., & Quinn, B. (2017). Microplastic Pollutants (1st ed.). Elsevier.
  • Cui, T., Shi, W., Wang, H., & Lihui, A. (2022). Standardizing microplastics used for establishing recovery efficiency when assessing microplastics in environmental samples. Science of the Total Environment, 827, Article 154323. https://doi.org/10.1016/j.scitotenv.2022.154323
  • Dagani, R. (1981). Organic battery uses polyacetylene electrodes. Chemical and Engineering News, 59, 39–40.
  • Devrim, G. (2019). Farklı liflerden üretilmiş kumaşların kullanım ve biyobozunurluk performansının incelenmesi, [Yüksek lisans tezi, Dokuz Eylül Üniversitesi]. YÖK Ulusal Tez Merkezi. https://tez.yok.gov.tr/UlusalTezMerkezi
  • Dimante-Deimantovica, I., Suhareva, N., Barone, M., Putna-Nimane, I., & Aigars, J. (2022). Hide-and-seek: Threshold values and contribution towards better understanding of recovery rate in microplastic research. MethodsX, 9, Article 101603. https://doi.org/10.1016/j.mex.2021.101603
  • Dorau, K., Hoppe, M., Rückamp, D., Köser, J., Scheeder, G., Scholz, K., & Fries, E. (2023). Status quo of operation procedures for soil sampling to analyze microplastics. Microplastics and Nanoplastics, 3(1), Article 15. https://doi.org/10.1186/s43591-023-00063-5
  • Dris, R., Gasperi, J., Mirande, C., Mandin, C., Guerrouache, M., Langlois, V., & Tassin, B. (2017). A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environmental Pollution, 221, 453–458. https://doi.org/10.1016/j.envpol.2016.12.013
  • Ebrahimi, P., Abbasi, S., Pashaei, R., Bogusz, A., & Oleszczuk, P. (2022). Investigating impact of physicochemical properties of microplastics on human health: A short bibliometric analysis and review. Chemosphere, 289, Article 133146. https://doi.org/10.1016/j.chemosphere.2021.133146
  • Forster, N. A., Wilson, S. C., & Tighe, M. K. (2022). Examining sampling protocols for microplastics on recreational trails. Science of the Total Environment, 818, Article 151813. https://doi.org/10.1016/j.scitotenv.2021.151813
  • Gabriel, A. D., Amparado, R. F., Lubguban, A. A., & Bacosa, H. P. (2023). Riverine Microplastic Pollution: Insights from Cagayan de Oro River, Philippines. International Journal of Environmental Research and Public Health, 20(12), Article 6132. https://doi.org/10.3390/ijerph20126132
  • Goswami, P., Vinithkumar, N. V., & Dharani, G. (2020). First evidence of microplastics bioaccumulation by marine organisms in the Port Blair Bay, Andaman Islands. Marine Pollution Bulletin, 155, Article 111163. https://doi.org/10.1016/j.marpolbul.2020.111163
  • Hagelskjær, O., Le Roux, G., Liu, R., Dubreuil, B., Behra, P., & Sonke, J. (2023). The recovery of aerosol-sized microplastics in highly refractory vegetal matrices for identification by automated Raman microspectroscopy. Chemosphere, 328, Article 138487. https://doi.org/10.1016/j.chemosphere.2023.138487
  • Havstad, M. R. (2020). Biodegradable plastics. In T.M. Letcher (Ed.), Plastic Waste and Recycling (pp. 97-129), Academic Press.
  • Hurley, R. R., Lusher, A. L., Olsen, M., & Nizzetto, L. (2018). Validation of a Method for Extracting Microplastics from Complex, Organic-Rich, Environmental Matrices. Environmental Science & Technology, 52(13), 7409–7417. https://doi.org/10.1021/acs.est.8b01517
  • International Standard Organization. (2020). Plastics - Environmental Aspects - State of knowledge and methodologies (ISO/TR 21960:2020). International Standard Organization (ISO). https://www.iso.org/standard/72300.html
  • International Standard Organization. (2023). Principles for the analysis of microplastics present in the environment (ISO 24187:2023). International Standard Organization (ISO). https://www.iso.org/standard/78033.html
  • Jacques, O., & Prosser, R. (2021). A probabilistic risk assessment of microplastics in soil ecosystems. Science of the Total Environment, 757, Article 143987. https://doi.org/10.1016/j.scitotenv.2020.143987
  • Karthik, R., Robin, R., Purvaja, R., Ganguly, D., Anandavelu, I., Raghuraman, R., Hariharan, G., Ramakrishna, A., & Ramesh, R. (2018). Microplastics along the beaches of southeast coast of India. Science of the Total Environment, 645, 1388–1399. https://doi.org/10.1016/j.scitotenv.2018.07.242
  • Kefer, S., Miesbauer, O., & Langowski, H. C. (2021). Environmental microplastic particles vs. engineered plastic microparticles—a comparative review. Polymers, 13(17), Article 2881. https://doi.org/10.3390/polym13172881
  • Kelly, F. J., & Fussell, J. C. (2020). Toxicity of airborne particles—established evidence, knowledge gaps and emerging areas of importance. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 378(2183), Article 20190322. https://doi.org/10.1098/rsta.2019.0322
  • Kershaw, P., Turra, A., & Galgani, F. (2019). Guidelines for the monitoring and assessment of plastic litter in the ocean. United Nations Environment Programme (UNEP). http://www.gesamp.org/site/assets/files/2002/rs99e.pdf
  • Kumkar, P., Gosavi, S. M., Verma, C. R., Pise, M., & Kalous, L. (2021). Big eyes can't see microplastics: Feeding selectivity and eco-morphological adaptations in oral cavity affect microplastic uptake in mud-dwelling amphibious mudskipper fish. Science of The Total Environment, 786, Article 147445. https://doi.org/10.1016/j.scitotenv.2021.147445
  • Liu, M., Lu, S., Song, Y., Lei, L., Hu, J., Lv, W., Zhou, W., Cao, C., Shi, H., Yang, X., & He, D. (2018). Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environmental Pollution, 242, 855–862. https://doi.org/10.1016/j.envpol.2018.07.051
  • Masura, J., Baker, J., Foster, G., & Arthur, C. (2015). Laboratory Methods for the Analysis of Microplastics in the Marine Environment: Recommendations for quantifying synthetic particles in waters and sediments (NOAA Technical Memorandum NOS-OR&R-48). NOAA Marine Debris Division.
  • Nayak, R., Jajpura, L., & Khandual, A. (2023). Traditional fibres for fashion and textiles: Associated problems and future sustainable fibres. In R. Nayak (Ed.), Sustainable Fibres for Fashion and Textile Manufacturing (pp. 3-25), Woodhead Publishing.
  • Nematollahi, M. J., Zarei, F., Keshavarzi, B., Zarei, M., Moore, F., Busquets, R., & Kelly, F. J. (2022). Microplastic occurrence in settled indoor dust in schools. Science of the Total Environment, 807, Article 150984. https://doi.org/10.1016/j.scitotenv.2021.150984
  • O’Brien, S., Rauert, C., Ribeiro, F., Okoffo, E. D., Burrows, S. D., O’Brien, J. W., Wang, X., Wright, S. L., & Thomas, K. V. (2023). There’s something in the air: A review of sources, prevalence and behaviour of microplastics in the atmosphere. Science of the Total Environment, 874, Article 162193. https://doi.org/10.1016/j.scitotenv.2023.162193
  • Pérez-Guevara, F., Roy, P. D., Kutralam-Muniasamy, G., & Shruti, V. (2022). Coverage of microplastic data underreporting and progress toward standardization. Science of the Total Environment, 829, Article 154727. https://doi.org/10.1016/j.scitotenv.2022.154727
  • Prata, J. C., da Costa, J. P., Duarte, A. C., & Rocha-Santos, T. (2019). Methods for sampling and detection of microplastics in water and sediment: A critical review. TrAC Trends in Analytical Chemistry, 110, 150–159. https://doi.org/10.1016/j.trac.2018.10.029
  • Prata, J. C., Castro, J. L., da Costa, J. P., Duarte, A. C., Cerqueira, M., & Rocha-Santos, T. (2020). An easy method for processing and identification of natural and synthetic microfibers and microplastics in indoor and outdoor air. MethodsX, 7, Article 100762. https://doi.org/10.1016/j.mex.2019.11.032
  • Prume, J. A., Gorka, F., & Löder, M. G. (2021). From sieve to microscope: An efficient technique for sample transfer in the process of microplastics’ quantification. MethodsX, 8, Article 101341. https://doi.org/10.1016/j.mex.2021.101341
  • Saha, M., Naik, A., Desai, A., Nanajkar, M., Rathore, C., Kumar, M., & Gupta, P. (2021). Microplastics in seafood as an emerging threat to marine environment: a case study in Goa, west coast of India. Chemosphere, 270, Article 129359. https://doi.org/10.1016/j.chemosphere.2020.129359
  • Scopetani, C., Chelazzi, D., Mikola, J., Leiniö, V., Heikkinen, R., Cincinelli, A., & Pellinen, J. (2020). Olive oil-based method for the extraction, quantification and identification of microplastics in soil and compost samples. Science of the Total Environment, 733, Article 139338. https://doi.org/10.1016/j.scitotenv.2020.139338
  • Seghers, J., Stefaniak, E. A., La Spina, R., Cella, C., Mehn, D., Gilliland, D., Held, A., Jacobsson, U., & Emteborg, H. (2021). Preparation of a reference material for microplastics in water—evaluation of homogeneity. Analytical and Bioanalytical Chemistry, 414(1), 385–397. https://doi.org/10.1007/s00216-021-03198-7
  • Shruti, V., & Kutralam-Muniasamy, G. (2023). Blanks and bias in microplastic research: Implications for future quality assurance. Trends in Environmental Analytical Chemistry, 38, Article e00203. https://doi.org/10.1016/j.teac.2023.e00203
  • Shruti, V., Pérez-Guevara, F., Roy, P. D., & Kutralam-Muniasamy, G. (2022). Analyzing microplastics with Nile Red: Emerging trends, challenges, and prospects. Journal of Hazardous Materials, 423, Article 127171. https://doi.org/10.1016/j.jhazmat.2021.127171
  • Song, S., Cai, L., Liu, Y., Peng, Z., Liu, C., Jiao, H., Li, P., Liu, Q., Yu, M., Zhou, T., Zhang, Q., Hollert, H., Zhao, X., & Jiang, G. (2023). Development of a solubility parameter calculation-based method as a complementary tool to traditional techniques for indoor dust microplastic determination and risk assessment. Journal of Hazardous Materials, 459, Article 132189. https://doi.org/10.1016/j.jhazmat.2023.132189
  • Tant, M. R., Mauritz, K. A., & Wilkes, G. L. (2012). Ionomers: synthesis, structure, properties and applications. Springer Science & Business Media.
  • Tewari, A., Almuhtaram, H., McKie, M. J., & Andrews, R. C. (2022). Microplastics for use in environmental research. Journal of Polymers and the Environment, 30(10), 4320–4332. https://doi.org/10.1007/s10924-022-02519-w
  • Thomas, D., Schütze, B., Heinze, W. M., & Steinmetz, Z. (2020). Sample preparation techniques for the analysis of microplastics in soil—a review. Sustainability, 12(21), Article 9074. https://doi.org/10.3390/su12219074
  • Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W. G., McGonigle, D., & Russell, A. E. (2004). Lost at Sea: Where Is All the Plastic? Science, 304(5672), 838–838. https://doi.org/10.1126/science.1094559
  • Way, C., Hudson, M. D., Williams, I. D., & Langley, G. J. (2022). Evidence of underestimation in microplastic research: A meta-analysis of recovery rate studies. Science of the Total Environment, 805, Article 150227. https://doi.org/10.1016/j.scitotenv.2021.150227
  • Wendt-Potthoff, K., Avellán, T., van Emmerik, T., Hamester, M., Kirschke, S., Kitover, D., & Schmidt, C. (2020). Monitoring plastics in rivers and lakes: Guidelines for the harmonization of methodologies. United Nations Environment Programme. https://wedocs.unep.org/bitstream/handle/20.500.11822/35405/MPRL.pdf
  • Wright, S. L., Gouin, T., Koelmans, A. A., & Scheuermann, L. (2021). Development of screening criteria for microplastic particles in air and atmospheric deposition: critical review and applicability towards assessing human exposure. Microplastics and Nanoplastics, 1(1), Article 6. https://doi.org/10.1186/s43591-021-00006-y
  • Xu, B., Liu, F., Cryder, Z., Huang, D., Lu, Z., He, Y., Wang, H., Lu, Z., Brookes, P. C., Tang, C., Gan, J., & Xu, J. (2020a). Microplastics in the soil environment: Occurrence, risks, interactions and fate – A review. Critical Reviews in Environmental Science and Technology, 50(21), 2175–2222. https://doi.org/10.1080/10643389.2019.1694822
  • Xu, C., Zhang, B., Gu, C., Shen, C., Yin, S., Aamir, M., & Li, F. (2020b). Are we underestimating the sources of microplastic pollution in terrestrial environment? Journal of Hazardous Materials, 400, Article 123228. https://doi.org/10.1016/j.jhazmat.2020.123228
  • Ya-di, Z., Tian-jie, S., Yan-hua, W., & Rui-yuan, W. (2022). Review and future trends of soil microplastics research: visual analysis based on Citespace. Environmental Sciences Europe, 34(1), Article 122. https://doi.org/10.1186/s12302-022-00703-2
  • Yang, H., Yumeng, Y., Yu, Y., Yinglin, H., Fu, B., & Wang, J. (2022). Distribution, sources, migration, influence and analytical methods of microplastics in soil ecosystems. Ecotoxicology and Environmental Safety, 243, Article 114009. https://doi.org/10.1016/j.ecoenv.2022.114009
  • You, X., Wang, S., Li, G., Du, L., & Dong, X. (2022). Microplastics in the soil: A review of distribution, anthropogenic impact, and interaction with soil microorganisms based on meta-analysis. Science of the Total Environment, 832, Article 154975. https://doi.org/10.1016/j.scitotenv.2022.154975
  • Zhang, L., Brostowitz, N. R., Cavicchi, K. A., & Weiss, R. A. (2018). Perspective: Ionomer Research and Applications. Macromolecular Reaction Engineering, 8(2), 81–99. https://doi.org/10.1002/mren.201300181
  • Zhang, Z., Zhao, S., Chen, L., Duan, C., Zhang, X., & Fang, L. (2022). A review of microplastics in soil: Occurrence, analytical methods, combined contamination and risks. Environmental Pollution, 306, Article 119374. https://doi.org/10.1016/j.envpol.2022.119374
  • Zhu, J., Zhang, X., Liao, K., Wu, P., & Jin, H. (2022). Microplastics in dust from different indoor environments. Science of the Total Environment, 833, Article 155256. https://doi.org/10.1016/j.scitotenv.2022.155256

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Research Articles
Authors

İrem ÖZTÜRK 0009-0006-8609-4950

Dilara CİNCİ 0009-0007-5120-4010

Fatma Nur ERASLAN 0000-0001-9053-0854

Mansoor Ahmad BHAT 0000-0001-7868-448X

Eftade GAGA 0000-0003-3182-9340

Kadir GEDİK 0000-0002-1391-9265

Project Number 121Y142 nolu proje
Publication Date January 28, 2024
Submission Date April 12, 2023
Acceptance Date September 15, 2023
Published in Issue Year 2024Volume: 10 Issue: 1

Cite

APA ÖZTÜRK, İ., CİNCİ, D., ERASLAN, F. N., BHAT, M. A., et al. (2024). Çevresel Mikroplastik Analizlerindeki Geri Kazanımı Değerlendirmeye Yönelik Bir Ön Çalışma. Doğal Afetler Ve Çevre Dergisi, 10(1), 155-166. https://doi.org/10.21324/dacd.1279109
AMA ÖZTÜRK İ, CİNCİ D, ERASLAN FN, BHAT MA, GAGA E, GEDİK K. Çevresel Mikroplastik Analizlerindeki Geri Kazanımı Değerlendirmeye Yönelik Bir Ön Çalışma. J Nat Haz Environ. January 2024;10(1):155-166. doi:10.21324/dacd.1279109
Chicago ÖZTÜRK, İrem, Dilara CİNCİ, Fatma Nur ERASLAN, Mansoor Ahmad BHAT, Eftade GAGA, and Kadir GEDİK. “Çevresel Mikroplastik Analizlerindeki Geri Kazanımı Değerlendirmeye Yönelik Bir Ön Çalışma”. Doğal Afetler Ve Çevre Dergisi 10, no. 1 (January 2024): 155-66. https://doi.org/10.21324/dacd.1279109.
EndNote ÖZTÜRK İ, CİNCİ D, ERASLAN FN, BHAT MA, GAGA E, GEDİK K (January 1, 2024) Çevresel Mikroplastik Analizlerindeki Geri Kazanımı Değerlendirmeye Yönelik Bir Ön Çalışma. Doğal Afetler ve Çevre Dergisi 10 1 155–166.
IEEE İ. ÖZTÜRK, D. CİNCİ, F. N. ERASLAN, M. A. BHAT, E. GAGA, and K. GEDİK, “Çevresel Mikroplastik Analizlerindeki Geri Kazanımı Değerlendirmeye Yönelik Bir Ön Çalışma”, J Nat Haz Environ, vol. 10, no. 1, pp. 155–166, 2024, doi: 10.21324/dacd.1279109.
ISNAD ÖZTÜRK, İrem et al. “Çevresel Mikroplastik Analizlerindeki Geri Kazanımı Değerlendirmeye Yönelik Bir Ön Çalışma”. Doğal Afetler ve Çevre Dergisi 10/1 (January 2024), 155-166. https://doi.org/10.21324/dacd.1279109.
JAMA ÖZTÜRK İ, CİNCİ D, ERASLAN FN, BHAT MA, GAGA E, GEDİK K. Çevresel Mikroplastik Analizlerindeki Geri Kazanımı Değerlendirmeye Yönelik Bir Ön Çalışma. J Nat Haz Environ. 2024;10:155–166.
MLA ÖZTÜRK, İrem et al. “Çevresel Mikroplastik Analizlerindeki Geri Kazanımı Değerlendirmeye Yönelik Bir Ön Çalışma”. Doğal Afetler Ve Çevre Dergisi, vol. 10, no. 1, 2024, pp. 155-66, doi:10.21324/dacd.1279109.
Vancouver ÖZTÜRK İ, CİNCİ D, ERASLAN FN, BHAT MA, GAGA E, GEDİK K. Çevresel Mikroplastik Analizlerindeki Geri Kazanımı Değerlendirmeye Yönelik Bir Ön Çalışma. J Nat Haz Environ. 2024;10(1):155-66.