Cilt 4, Sayı 1, Sayfalar 34 - 44 2018-01-31

Dinamik Çığ Tehlike Değerlendirmesi İçin Bayes Ağlarının CBS'ye Entegrasyonu: UKVA Perspektifi
Integration of Bayesian Networks with GIS for Dynamic Avalanche Hazard Assessment: NSDI Perspective

İpek Yılmaz [1] , Derya Öztürk [2]

12 14

Doğal afetlerle ilgili çalışmalarda tehlike değerlendirmesi, risk tanımlama ve erken uyarı sistemlerinin temelidir ve büyük kayıpların engellenmesinde önemli bir rol oynamaktadır. Klasik tehlike tanımlama yöntemleri statiktir. Bu nedenle, yeni bilgi ve koşullar önceden tanımlanmış tehlike değerlendirmelerine kolayca dahil edilemez. Bayes Ağları, dinamik tehlike tanımlaması için etkin bir şekilde kullanılabilir. Bu çalışmada, değişen ve yenilenen verilerin sisteme dahil edilebildiği dinamik çığ tehlike değerlendirmesi için Bayes Ağlarına dayanan bir yaklaşım sunulmuştur. Önerilen metodolojide, Bayes Ağlarının ve Coğrafi Bilgi Sistemlerinin (CBS) entegrasyonu, Ulusal Konumsal Veri Altyapısı (UKVA) perspektifinde modellenmiştir. Bu yapıda, farklı kaynaklardan elde edilen verilerin birleştirilmesi ve analiz edilmesi mümkün olup, çığ tehlikesi için etken faktörler gerçek zamanlı güncel verilerle dinamik olarak güncellenerek zamansal tehlike haritaları üretilebilir. Önerilen metodoloji genel bir yapı sunmaktadır ve diğer afetlere yönelik dinamik harita üretimi çalışmaları için uyarlanabilir niteliktedir.


Natural hazard assessments are core to risk definition and early warning systems and play a fundamental role in the prevention of major damages. Traditional hazard identification methods are static. For this reason, new information and conditions cannot be easily included in the pre-defined hazard assessments. The Bayesian Networks can be used effectively for dynamic hazard identification. In this study, a methodology based on the Bayesian Networks model is presented for dynamic avalanche hazard assessment, in which changed and renewed data can be included in the system. In the proposed methodology, the integration of the Bayesian Networks and Geographical Information Systems (GIS) is modeled in the National Spatial Data Infrastructure (NSDI) perspective. In this structure, it is possible to combine and analyze the data obtained from different sources and factors for avalanche hazard can be dynamically updated with real-time updated data and temporal hazard mapping can be produced. The proposed methodology provides a generic structure and has an attribute making it applicable for dynamic mapping studies for other disasters.

  • A.S. Mohammed A.A., Naqvi H.R., Firdouse Z. J., (2015), An assessment and identification of avalanche hazard sites in Uri sector and its surroundings on Himalayan mountain, Journal of Mountain Science, 12(6), 1499-1510, doi: 10.1007/s11629-014-3274-z.
  • Akıncı H., Yavuz-Özalp A., Özalp M., Temuçin-Kılıçer S., Kılıçoğlu C., Everan E., (2014), Bayes olasılık teoremi kullanılarak heyelan duyarlılık haritalarının üretilmesi, 5. Uzaktan Algılama ve CBS Sempozyumu (UZAL-CBS 2014), 14-17 Ekim 2014, İstanbul.
  • Ames D.P., Anselmo A., (2008), Bayesian Network Integration with GIS, In: Encyclopedia of GIS, Springer US, pp. 39-45.
  • Anderson-Berry L., King D., (2005), Mitigation of the impact of tropical cyclones in Northern Australia through community capacity enhancement, Mitigation and Adaptation Strategies for Global Change, 10(3), 367-392.
  • Annoni A., Craglia M., de Roo A., San-Miguel J., (2010), Earth observations and dynamic mapping: Key assets for risk management, Geographic Information and Cartography fore Risk and Crisis Management, In: Lecture Notes in Geoinformation and Cartography, (Konecny M., Zlatanova S., Bandrova T.L., Eds.), Springer-Verlag, Berlin-Heidelberg, pp.3-22.
  • Aydın A., Eker R., (2017), GIS-Based snow avalanche hazard mapping: Bayburt-Aşağı Dere catchment case, Journal of Environmental Biology, 38, 937-943, doi: 10.22438/jeb/38/5(SI)/GM-10.
  • Bajpai N., (2009), Business Statistics, Pearson Education, 794 p.
  • Bossomaier T., Hope B.A., (2015), Online GIS and spatial metadata, CRC Press, United States, 438 p.
  • Bostancı H.T., Cömert Ç., Akıncı H., (2007), UKVA için tapu ve kadastro web servislerinin tasarımı ve geliştirilmesi, TMMOB Harita ve Kadastro Mühendisleri Odası 11. Türkiye Harita Bilimsel ve Teknik Kurultayı, 2-6 Nisan 2007, Ankara.
  • Bröring A., Echterhoff J., Jirka S., Simonis I., Everding T., Stasch C., Liang S., Lemmens R., (2011), New generation sensor web enablement, Sensors, 11, 2652-2699, doi:10.3390/s110302652.
  • Brugnot G., (2008), Spatial Management of Risks, ISTE Ltd and John Wiley & Sons Inc, London United Kingdom, 256 p.
  • Cookler L., Orton B., (2004), Developing a GIS avalanche forecasting model using real-time weather telemetry information for the south side of MT. Hood, Proceedings of the 2004 International Snow Science Workshop, Jackson Hole, Wyoming, pp. 145-152.
  • Cordy P., McClung D.M., Hawkins C.J., Tweedy J., Weick T., (2009), Computer assisted avalanche prediction using electronic weather sensor data, Cold Regions Science and Technology, 59, 227-233, doi: 10.1016/j.coldregions.2009.07.006.
  • Covăsnianu A., Grigoras I.R., State L.E., Balin I., Balin D., Hogas S., (2011), Mapping snow avalanche risk using GIS technique and 3D modeling: Case study Ceahlau National Park, Romanian Journal of Physics, 56(3-4), 476-483,doi: 10.2139/ssrn.1884082.
  • Cömert Ç., Akıncı H., (2005), Ulusal konumsal veri altyapısı ve e-Türkiye için önemi, TMMOB Harita ve Kadastro Mühendisleri Odası 10. Türkiye Harita Bilimsel ve Teknik Kurultayı, 28 Mart-1 Nisan 2005, Ankara.
  • Çinicioğlu E.N., Ekici Ş.E., Ülengin F., (2015), Bayes ağ yapısının oluşturulmasında farklı yaklaşımlar: Nedensel Bayes ağları ve veriden ağ öğrenme, In: Sn. Prof. Dr. Halil Sarıaslan'a Armağan Kitabı, Siyasal Kitabevi, Ankara, pp.267-284.
  • d'Acremont M., Schultz W., Bossaerts P., (2013), The human brain encodes event frequencies while forming subjective belief, Journal of Neuroscience, 33(26), 10887-10897, doi: 10.1523/JNEUROSCI.5829-12.2013.
  • Doğan S., Akıncı H., Kılıçoğlu C., (2012), Bayes olasılık teoremi kullanılarak Samsun il merkezinin heyelan duyarlılık haritasının üretilmesi, 65. Türkiye Jeoloji Kurultayı, 2-6 Nisan 2012, Ankara.
  • Eckert N., Naaim M., Parent E., (2010), Long-term avalanche hazard assessment with a Bayesian depth-averaged propagation model, Journal of Glaciology, 56(198), 563-586, doi:10.3189/002214310793146331.
  • Elibüyük M., Yılmaz E., (2010), Türkiye’nin coğrafi bölge ve bölümlerine göre yükselti basamakları ve eğim grupları, Coğrafi Bilimler Dergisi, 8(1), 27-55.
  • Elmastaş N., Özcanlı M., (2011), Bitlis ilinde çığ afet alanlarının tespiti ve çığ risk analizi, VI.Ulusal Coğrafya Sempozyumu, 3-5 Kasım 2010, Ankara, Bildiriler Kitabı, pp. 303-314.
  • Germain D., (2016), Snow avalanche hazard assessment and risk management in northern Quebec, eastern Canada, Natural Hazards, 80, 1303-1321, doi: 10.1007/s11069-015-2024-z.
  • Grêt-Regamey A., Straub D., (2006), Spatially explicit avalanche risk assessment linking Bayesian networks to a GIS, Natural Hazards and Earth System Sciences, 6(6), 911-926, doi:10.5194/nhess-6-911-2006.
  • Helbig N., van Herwijnen A., Jonas T., (2015), Forecasting wet-snow avalanche probability in mountainous terrain, Cold Regions Science and Technology, 120, 219-226, doi: 10.1016/j.coldregions.2015.07.001.
  • Hwang J.W., Lee Y.S., Cho S.B., (2011), Structure evolution of dynamic Bayesian network for traffic accident detection. In Evolutionary Computation (CEC), 2011 IEEE Congress on (pp. 1655-1671), IEEE (2011, June).
  • Jaedicke C., Syre E., Sverdrup-Thygeson K., (2014), GIS-aided avalanche warning in Norway, Computers & Geosciences, 66, 31-39, doi: 10.1016/j.cageo.2014.01.004.
  • Jebb A.T., (2017), Bayesian statistics, In: The SAGE Encyclopedia of Industrial and Organizational Psychology, (Rogelberg S.G., Ed.), SAGE Publications, Inc.
  • Jonkman N.S., Gerritsen H., Marchand M., (2012), Coastal storm, In: Handbook of Hazards and Disaster Risk Reduction and Management, (Wisner B., Gaillard J.C., Kelman I., Eds.), Taylor & Francis, New York, pp. 220-231.
  • Kadıoğlu M., (2008), Sel, heyelan ve çığ için risk yönetimi, TMMOB İnşaat Mühendisleri Odası Samsun Şubesi Sel-Heyelan-Çığ Sempozyumu, 28-29 Mayıs 2008, Samsun.
  • Kelly D., Smith C., (2011), Bayesian Inference for Probabilistic Risk Assessment: A Practitioner's Guidebook, Springer-Verlag, 225p.
  • Kıncay O., (2017), Güneş Enerjisi, http://www.solar-academy.com/menuis/Gunes-Enerjisi.021720.pdf, [Accessed 29 September 2017].
  • Kragt M.E., (2009), A beginners guide to Bayesian network modelling for integrated catchment management. Landscape Logic, Technical Report No. 9, 22 p.
  • Kriz K., (2001), Using GIS and 3D Modeling for avalanche hazard mapping. ICA-CMC session of mountain cartography, Beijing, China.http://www.mountaincartography.org/publications/papers/ica_cmc_sessions/2_Beijing_Session_Mountain_Carto/5_Beijing_Kriz.pdf, [Accessed 23 October 2017].
  • Kumar S., Srivastava K.P., Snehmani, (2017), GIS-based MCDA–AHP modelling for avalanche susceptibility mapping of Nubra valley region, Indian Himalaya, Geocarto International, 32(11), 1254-1267, doi: 10.1080/10106049.2016.1206626.
  • Landuyt D., Van der Biest K., Broekx S., Staes J., Meire P., Goethals P.L.M.A., (2015), GIS plug-in for Bayesian belief networks: Towards a transparent software framework to assess and visualise uncertainties in ecosystem service mapping, Environmental Modelling and Software, 71, 30-38, doi:10.1016/J.ENVSOFT.2015.05.002.
  • Liu X., Liu Y., Li L., Ren Y., (2009), Disaster monitoring and early-warning system for snow avalanche along Tianshan Highway, IGARSS 2009 - 2009 IEEE International Geoscience and Remote Sensing Symposium, 12-17 July 2009, Cape Town, South Africa.
  • Maggioni M., Gruber U., (2003), The influence of topographic parameters on avalanche release dimension and frequency, Cold Regions Science and Technology, 37, 407-419 , doi: 10.1016/S0165-232X(03)00080-6.
  • McClung D., Schaerer P.A., (2006), The avalanche handbook, Mountaineers Books, 342p.
  • McCollister C., Birkeland K. W., (2006), Using Geographic Information Systems for Avalanche Work, Published in The Avalanche Review, 24(4) .
  • Narasimhan B.V.A., (2003), Early and dynamic warning: An integrated approach to drought management, In: Early Warning Systems for Natural Disaster Reduction, (Zschau J., Küppers A., Eds.), Springer, Berlin-Heidelberg, Berlin, pp.357-365.
  • Naresh P., Pant L.M., (1999), Knowledge-Based system for forecasting snow avalanches of Chowkibal-Tangdhar Axis (J&K), Defence Science Journal, 49(5), 381-391.
  • Nefeslioglu H.A., Sezer E.A., Gokceoglu C., Ayas Z., (2013), A modified analytical hierarchy process (M-AHP) approach for decision support systems in natural hazard assessments, Computers & Geosciences, 59, 1-8, doi: 10.1016/j.cageo.2013.05.010.
  • Omirzhanova Zh. T., Urazaliev A.S., Aimenov A.T., (2015), GIS for Predicting The Avalanche Zones In The Mountain Regions of Kazakhstan, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-2/W4, 2015, 39-44, doi: 10.5194/isprsarchives-XL-2-W4-39-2015.
  • Osterhuber R. J., (1999), Precipitation intensity during rain-on-snow, 67th Annual Western Snow Conference, April 1999, South Lake Tahoe, California
  • Papakosta P., Straub D., (2015), A Bayesian Network Approach to Assessing Wildfire Consequences, Proceedings ICOSSAR 2013: 11th International Conference on Structural Safety & Reliability, 16-20 June 2013, New York, United States.
  • Pine J.C., (2008), Natural hazard analysis: Reducing the impact of disasters, CRC Press, Taylor & Francis Group, Boca Raton, 304 p.
  • Pulwarty R.S., Sivakumar MV.K., (2014), Information systems in a changing climate: Early warnings and drought risk management, Weather and Climate Extremes, 3, 14-21, doi: 10.1016/j.wace.2014.03.005.
  • Qiu G.Q., Huang S., .Zhu L.L , Su X.H., Chen Y., (2015), Risk assessment of multi-state Bayesian Network in an oil gathering and transferring system, Procedia Engineering, 130, 1514-1523, doi: 10.1016/j.proeng.2015.12.320.
  • Rawat J.S., Kumar M., (2015), Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India, Egyptian Journal of Remote Sensing and Space Science, 18(1), 77-84, doi:10.1016/j.ejrs.2015.02.002.
  • Rudolf-Miklau F., Sauermoser S., Mears A. (Eds), (2015), The Technical Avalanche Protection Handbook, Berlin, Germany, 430 p.
  • Selçuk L., (2013), An avalanche hazard model for Bitlis Province, Turkey, using GIS based multicriteria decision analysis, Turkish Journal of Earth Sciences, 22, 523-535, doi: 10.3906/yer-1201-10.
  • Simea I. M., (2012), The Avalanches From Rodnei Mountains, PhD Thesis, Babeş-Bolyai University, Cluj-Napoca.
  • Srinivasan K., Semwal G., Sunil T., (1999), Statistical-Based Forecasting of Avalanche Prediction, Defence Science Journal, 49(5), 447-455.
  • Stassopoulou A., Petrou M., Kittler J., (1998), Application of a Bayesian network in a GIS based decision making system, International Journal of Geographical Information Science, 12(1), 23-46, doi:10.1080/136588198241996.
  • Straub D., Grêt-Regamey A., (2006), A Bayesian probabilistic framework for avalanche modelling based on observations, Cold Regions Science and Technology, 46(3), 192-203, doi:10.1016/j.coldregions.2006.08.024.
  • Suk P., Klimánek M., (2011), Creation of the snow avalanche susceptibility map of the Krkonoše Mountains using GIS, Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 28(5), 237-245, doi: 10.11118/actaun201159050237.
  • Şahan M., Tokat Ö., Okur Y., (2015), Osmaniye’de günlük toplam güneş ışınım ölçümleri, SDU Journal of Science (E-Journal), 10(2), 97-105, http://dergipark.gov.tr/download/article-file/116445.
  • Taştekin A.T., (2003), Meteoroloji ve çığ, https://www.mgm.gov.tr/FILES/genel/makale/meteorolojivecig.pdf, [Accessed 11 August 2017].
  • Turkish Disaster and Emergency Management Presidency, (2015), Çığ Temel Kılavuzu, https://www.afad.gov.tr/upload/Node/3468/xfiles/cig_temel-kilavuz-tr_.pdf, [Accessed 23 July 2017].
  • Turkish General Directorate of Disaster Affairs, (1999), Çığ el kitabı, Bayındırlık ve İskan Bakanlığı, Ankara, Afet İşleri Genel Müdürlüğü Yayınları, 94 p.
  • Turkish General Directorate of Geographic Information Systems, (2012), Türkiye Ulusal Coğrafi Bilgi Sistemleri Standartlarının Belirlenmesi Projesi: TUCBS.AO Arazi Örtüsü Veri Teması, TUCBS Temel Veri Temaları Gereksinim Analizi, 98p.
  • Turkish General Directorate of Meteorology, (2017), https://www.mgm.gov.tr/FILES/resmi-istatistikler/Turkiye-Gunluk-Guneslenme-Suresi.pdf, [Accessed 30 October 2017].
  • U.S. Geological Survey, (2016), Data Series 284, https://pubs.usgs.gov/ds/2007/284/section7.html, [Accessed 28 October 2017].
  • Villa V., Paltrinieri N., Cozzani V., (2015), Overview on dynamic approaches to risk management in process facilities, Chemical Engineering Transactions, 43, 2497-2502, doi:10.3303/CET154341.
  • Woodmencey J. and Nalli B., (2010), Avalanche weather forecasting, http://nidm.gov.in/pdf/guidelines/new/landslidessnowavalanches.pdf, [Accessed 29 October 2017].
  • Xin P., Khan F., Ahmed S., (2017), Dynamic hazard identification and scenario mapping using Bayesian network, Process Safety and Environmental Protection, 105, 143-155, doi:10.1016/j.psep.2016.11.003.
  • Yiğit M., (2015), Güneş enerjisi ölçümleri ve ölçüm tebliği, Meteroloji Genel Müdürlüğü, Gözlem Sistemleri Dairesi Başkanlığı, http://www.gensed.org/CF/CD/15970af38a9b39767fffb6e9afa13fb18e8f1422437016.pdf, [Accessed 29 October 2017].
  • Yilmaz B., (2016), Application of GIS-Based fuzzy logic and Analytical Hierarchy Process (AHP) to snow avalanche susceptibility mapping, North San Juan, Colorado, Master of Arts Thesis, University of Colorado at Boulder, Colorado, USA.
  • URL 1: Olasılık teorisi, http://insaat.balikesir.edu.tr/dokumanlar/istatistik/ist2.pdf, [Accessed 12 August 2017].
  • URL 2: Development of a major R&D sub-programme on geo-spatial technologies: Sensor web enablement (SWE) and sensor networks, http://nrdms.gov.in/ogc.asp, [Accessed 12 August 2017].
  • URL 3: INSPIRE Infrastructure for Spatial Information in Europe, D2.9 Draft Guidelines for the use of Observations & Measurements and Sensor Web Enablement-related standards in INSPIRE Annex II and III data specification development, http://inspire.ec.europa.eu/documents/Data_Specifications/D2.9_O&M_Guidelines_v2.0rc3.pdf, [Accessed 13 August 2017].
Birincil Dil en
Konular Mühendislik ve Temel Bilimler
Yayımlanma Tarihi 2018
Dergi Bölümü Araştırma Makalesi
Yazarlar

Yazar: İpek Yılmaz (Sorumlu Yazar)
E-posta: ipek.yilmaz@omu.edu.tr
Kurum: Ondokuz Mayıs Üniversitesi
Ülke: Turkey


Yazar: Derya Öztürk
E-posta: dozturk@omu.edu.tr
Kurum: Ondokuz Mayıs Üniversitesi
Ülke: Turkey


Bibtex @araştırma makalesi { dacd365255, journal = {Doğal Afetler ve Çevre Dergisi}, issn = {}, address = {Artvin Çoruh Üniversitesi}, year = {2018}, volume = {4}, pages = {34 - 44}, doi = {10.21324/dacd.365255}, title = {Dinamik Çığ Tehlike Değerlendirmesi İçin Bayes Ağlarının CBS'ye Entegrasyonu: UKVA Perspektifi}, language = {tr}, key = {cite}, author = {Yılmaz, İpek and Öztürk, Derya} } @araştırma makalesi { dacd365255, journal = {Doğal Afetler ve Çevre Dergisi}, issn = {}, address = {Artvin Çoruh Üniversitesi}, year = {2018}, volume = {4}, pages = {34 - 44}, doi = {10.21324/dacd.365255}, title = {Integration of Bayesian Networks with GIS for Dynamic Avalanche Hazard Assessment: NSDI Perspective}, language = {en}, key = {cite}, author = {Yılmaz, İpek and Öztürk, Derya} }
APA Yılmaz, İ , Öztürk, D . (2018). Dinamik Çığ Tehlike Değerlendirmesi İçin Bayes Ağlarının CBS'ye Entegrasyonu: UKVA Perspektifi. Doğal Afetler ve Çevre Dergisi, 4 (1), 34-44. DOI: 10.21324/dacd.365255
MLA Yılmaz, İ , Öztürk, D . "Dinamik Çığ Tehlike Değerlendirmesi İçin Bayes Ağlarının CBS'ye Entegrasyonu: UKVA Perspektifi". Doğal Afetler ve Çevre Dergisi 4 (2018): 34-44 <http://dacd.artvin.edu.tr/issue/34409/365255>
Chicago Yılmaz, İ , Öztürk, D . "Dinamik Çığ Tehlike Değerlendirmesi İçin Bayes Ağlarının CBS'ye Entegrasyonu: UKVA Perspektifi". Doğal Afetler ve Çevre Dergisi 4 (2018): 34-44
RIS TY - JOUR T1 - Dinamik Çığ Tehlike Değerlendirmesi İçin Bayes Ağlarının CBS'ye Entegrasyonu: UKVA Perspektifi AU - İpek Yılmaz , Derya Öztürk Y1 - 2018 PY - 2018 N1 - doi: 10.21324/dacd.365255 DO - 10.21324/dacd.365255 T2 - Doğal Afetler ve Çevre Dergisi JF - Journal JO - JOR SP - 34 EP - 44 VL - 4 IS - 1 SN - -2528-9640 M3 - doi: 10.21324/dacd.365255 UR - http://dx.doi.org/10.21324/dacd.365255 Y2 - 2018 ER -
EndNote %0 Doğal Afetler ve Çevre Dergisi Dinamik Çığ Tehlike Değerlendirmesi İçin Bayes Ağlarının CBS'ye Entegrasyonu: UKVA Perspektifi %A İpek Yılmaz , Derya Öztürk %T Dinamik Çığ Tehlike Değerlendirmesi İçin Bayes Ağlarının CBS'ye Entegrasyonu: UKVA Perspektifi %D 2018 %J Doğal Afetler ve Çevre Dergisi %P -2528-9640 %V 4 %N 1 %R doi: 10.21324/dacd.365255 %U 10.21324/dacd.365255