Araştırma Makalesi
BibTex RIS Kaynak Göster

Geotechnical Investigation of the Slope Instability in the Gündoğan Village Settlement Area (Ardeşen-Rize)

Yıl 2018, Cilt: 4 Sayı: 2, 221 - 235, 13.07.2018
https://doi.org/10.21324/dacd.417920

Öz

In the scope of this study, the slope stability problem in the Gündoğan (Ardeşen-Rize) village settlement area covering approximately 2.24 hectares was investigated by means of geotechnical way. The studies were performed in three stages as field, laboratory works and slope stability analyses. For this purpose, along the three survey lines; six boreholes with a total of 150 meters in length were drilled, geophysical studies were performed along the three lines and inclinometer measurements were taken in two boreholes. At the end of the field work, it was determined that the talus whose thickness varies between 5.0 and 16.5 meters overlies the parent material that was formed by the Late Cretaceous-aged Çağlayan Formation consisting of volcano-sedimentary rocks. To determine the physico-mechanical properties of the talus, undisturbed samples were taken from boreholes. Limit equilibrium and the Finite Element based Shear Strength Reduction (FEM-SSR) methods were used to perform stability analyses using the obtained data from field and laboratory studies and the results were compared. When examining the distribution of the failure surfaces obtained from the stability analyses, it was detected that the failure may continue as retrogressive type if there is not any precaution taken on the slope. Performed inclinometer measurements and stability analyses showed that the talus in the Gündoğan village settlement area is unstable and has a landslide potential.




Kaynakça

  • Akgün A., Bulut F., (2007), GIS-based landslide susceptibility for Arsin-Yomra (Trabzon, North Turkey) Region, Environmental Geology, 51, 1377-1387.
  • Akgün A., Dağ S., Bulut F., (2008), Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models, Environmental Geology, 54, 1127-1143.
  • Akgün A., Sezer E.A., Nefeslioğlu H.A., Gökçeoğlu C., Pradhan B., (2012), An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm, Computers and Geosciences, 38(1), 23-34.
  • Alemdağ S., Akgün A., Kaya A., Gökçeoğlu C., (2014), A large and rapid planar failure: causes, mechanism and consequences (Mordut, Gumushane, Turkey), Arabian Journal of Geoscience, 7(3), 1205-1221.
  • Alemdağ S., Kaya A., Karadağ M., Gürocak Z., Bulut F., (2015), Utilization of the limit equilibrium and finite element methods for the stability analysis of the slope debris: an example of the Kalebasi district (NE Turkey), Journal of African Earth Science, 106, 134-146.
  • Althuwaynee O.F., Pradhan B, Lee S., (2012), Application of an evidential belief function model in landslide susceptibility mapping, Computers and Geosciences, 44, 120-135.
  • ASTM, (2005), Standard test methods for liquid limit, plastic limit and plasticity index of soils, Annual Book of ASTM Standards, ASTM D4318, Philedelphia, USA.
  • ASTM, (2006), Standard practice for classification of soils for engineering purposes (Unified Soil Classification System), Annual Book of ASTM Standards, ASTM D2487, Philedelphia, USA.
  • ASTM, (2007), Standard test method for particle-size analysis of soils, Annual Book of ASTM Standards, ASTM D422, Philedelphia, USA.
  • ASTM, (2009), Standard test methods for laboratory determination of density (unit weight) of soil specimens, Annual Book of ASTM Standards, ASTM D7263-09, Philedelphia, USA.
  • ASTM, (2017), Standard test method for consolidated undrained direct simple shear testing of fine grain soils, Annual Book of ASTM Standards, ASTM D6528-17, Philedelphia, USA.
  • Avşar O., Akgun H., Kockar M.K., (2014), Investigation of the failure mechanism and stabilization of a landslide in weathered tuffite, Giresun, northeastern Turkey, Environmental Earth Science, 72, 3723-3740.
  • Ayalew L., Yamagishi H., Ugawa N., (2004), Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano river, Niigate prefecture, Japan, Landslides, 1, 73-81.
  • Castellanos Abella E.A., Van Westen C.J., (2007), Generation of a landslide risk index map for Cuba using spatial multi-criteria evaluation, Landslides, 4, 311-325.
  • Çan T., Nefeslioğlu H.A., Gökçeoğlu C., Sönmez H., Duman T.Y., (2005), Susceptibility assessments of shallow earthflows triggered by heavy rainfall at three catchments by logistic regression analyses, Geomorphology, 72, 250-271.
  • Dağ S., (2007), Çayeli (Rize) ve çevresinin istatistiksel yöntemlerle heyelan duyarlılık analizi, Doktora Tezi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon, Türkiye.
  • Dağ S., Bulut F., (2012), Coğrafi bilgi sistemleri tabanlı heyelan duyarlılık haritalarının hazırlanmasına bir örnek: Çayeli (Rize, KD Türkiye), Jeoloji Mühendisliği Dergisi, 36(1), 35-62.
  • Ercanoğlu M., Gökçeoğlu C., (2002), Assessment of landslide susceptibility for a landslide-prone area (North of Yenice, NW Turkey) by fuzzy approach, Environmental Geology, 41, 720-730.
  • Gökçeoğlu C., Aksoy H., (1996), Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and ımage processing techniques, Engineering Geology, 44, 147-161.
  • Gürocak Z., Alemdağ S., Zaman M., (2008), Rock slope stability and excavatability assessment of rocks at the Kapikaya dam site eastern Turkey, Engineering Geology, 96(1-2), 17-27.
  • Güven İ.H., (1993), Doğu Pontidlerin jeolojisi ve 1/250000 ölçekli komplikasyonu, MTA, Ankara.
  • Jeldes I., Vence N., Drumm E., (2013), An approximate solution to the Sokolovskiıˇ concave slope at limiting equilibrium, International Journal of Geomechanics, 15(2), 1-8.
  • Kahatadeniya K.S., Nanakorn P., Neaupane K.M., (2009), Determination of the critical failure surface for slope stability analysis using antcolony optimization, Engineering Geology, 108, 133-141.
  • Kaya A., Akgün A., Karaman K., Bulut F., (2015), Understanding the mechanism of a slope failure on nearby a highway tunnel route by different slope stability analysis methods: a case from NE Turkey, Bulletin of Engineering Geology and the Environment, 75(3), 945-958.
  • Kaya A., Alemdağ S., Dağ S., Gürocak Z., (2016), Stability assesment of high steep cut slope debris on a landslide Gumushane NE Turkey, Bulletin of Engineering Geology and the Environment, 75(1), 89-99.
  • Kaya A., Bulut F, Dağ S., (2018), Bearing capacity and slope stability assessment of rock masses at the Subasi viaduct site, NE Turkey, Arabian Journal of Geoscience, doi: 10.1007/s12517-018-3477-7.
  • Ketin İ., (1966), Tectonic units of Anatolia, Journal of General Directorate of Mineral Research and Exploration (MTA), 66, 23-34.
  • Kıncal C., Akgün A., Koca M.Y., (2009), Landslide susceptibility assessment in the Izmir (West Anatolia, Turkey) city center and its near vicinity by the logistic regression method, Environmental Earth Sciences, 59, 745-756.
  • Lee S., (2005), Application of logistic regression model and ıts validation for landslide susceptibility mapping using GIS and remote sensing data, International Journal of Remote Sensing, 26(7), 1477-1491.
  • Liu F., Zhao J., (2013), Limit analysis of slope stability by rigid finite element method and linear programming considering rotational failure, International Journal of Geomechanics, 13(6), 827-839.
  • Mines Branch, Canada, (1972), Tentative design guide for mine waste embankments in Canada, Department of Energy, Mines and Resources, Canada.
  • Nefeslioğlu H.A., Gökçeoğlu C., Sönmez H., (2008), An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps, Engineering Geology, 97, 171-191.
  • Ösna T., Sezer E.A., Akgün A., (2014), GEOFIS: an integrated tool for the assessment of landslide susceptibility, Computers and Geosciences, 66, 20-30.
  • Pradhan B., Sezer E.A., Gökçeoğlu C., Buchroithner M.F., (2010), Landslide susceptibility mapping by neuro-fuzzy approach in a landslide prone area (Cameron Highland, Malaysia), IEEE Transactions on Geosciences Remote Sensing, 48(12), 4164-4177.
  • Reichenbacha P., Rossia M., Malamudb B.D., Mihirb M., Guzzettia F., (2018), A review of statistically-based landslide susceptibility models, Earth-Science Reviews, 180, 60-91.
  • Rocscience, (2011a), Slide v6.0, 2D limit equilibrium slope stability analysis, Rocscience Inc., Toronto, Ontario, Canada.
  • Rocscience, (2011b), Phase2 v8.0 finite element analysis for excavations and slopes, Rocscience Inc., Toronto, Ontario, Canada.
  • Romer C., Ferentinou M., (2016), Shallow landslide susceptibility assessment in a semiarid environment—A Quaternary catchment of KwaZulu-Natal, South Africa, Engineering Geology, 201, 29-44.
  • Samia J., Temme A., Bregt A., Wallinga J., Guzzetti F., Ardizzone F., Rossi M., (2017), Characterization and quantification of path dependency in landslide susceptibility, Geomorphology, 292, 16-24.
  • Sezer E.A., Pradhan B., Gökçeoğlu C., (2011), Manifestation of an adaptive neuro-fuzzy model on landslide susceptibility mapping: Klang valley, Malaysia, Expert Systems and Applications, 38(7), 8208-8219.
  • Varnes D.J., (1978), Slope movement types and processes, Landslides-analysis and control: National Research Council, Transportation Research Board, Washington D.C., 176ss.
  • Yeşilnacar E., Topal T., (2005), Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey), Engineering Geology, 79, 251-266.

Gündoğan (Ardeşen-Rize) Köyü Yerleşim Alanındaki Yamaç Duraysızlığının Jeoteknik Açıdan İncelenmesi

Yıl 2018, Cilt: 4 Sayı: 2, 221 - 235, 13.07.2018
https://doi.org/10.21324/dacd.417920

Öz

Bu çalışma kapsamında Gündoğan (Ardeşen-Rize) Köyü yerleşim alanının
üstünde bulunduğu yamaçta meydana gelen ve yaklaşık olarak 2.24 hektarlık bir
alanı kapsayan duraysızlık problemi jeoteknik açıdan incelenmiştir. Yapılan
çalışmalar sırasıyla arazi, laboratuvar ve şev duraylılık analizi çalışmaları
olmak üzere üç aşamada yürütülmüştür. Bu amaçla eğim yönünde 3 hat boyunca
toplam 150 m derinliğinde 6 adet sondaj kuyusu açılmış, 3 profilde jeofizik
çalışmalar gerçekleştirilmiş ve 2 sondaj kuyusunda inklinometre ölçümleri
yapılmıştır. Arazi çalışmaları sonucunda ana kayayı Geç Kretase yaşlı Çağlayan
Formasyonu’na ait volkano-tortul kayaçların oluşturduğu ve bu birimlerin
üzerine kalınlığı 5.0-16.5 m arasında değişen yamaç molozunun geldiği belirlenmiştir.
Yamaç molozunun fiziko-mekanik özelliklerini tespit etmek için araştırma
sondajlarından örselenmemiş örnekler alınmıştır. Arazi ve laboratuvar
çalışmalarından elde edilen veriler yardımıyla Limit Denge ve sonlu elemanlar
tabanlı Kayma Dayanımı Azaltma Yaklaşımı (FEM-SSR) yöntemleri kullanılarak
duraylılık analizleri yapılmış ve sonuçlar karşılaştırılmıştır. Duraylılık
analizleriyle belirlenen kayma yüzeylerinin dağılımları incelendiğinde yamaçta
önlem alınmaması durumunda yenilmenin gerileyen şekilde devam edebileceği
saptanmıştır. Yapılan inklinometre ölçümleri ve duraylılık analizleri, Gündoğan
Köyü yerleşim alanındaki yamaç molozunun duraysız olduğunu ve heyelan potansiyeli
taşıdığını göstermektedir.

Kaynakça

  • Akgün A., Bulut F., (2007), GIS-based landslide susceptibility for Arsin-Yomra (Trabzon, North Turkey) Region, Environmental Geology, 51, 1377-1387.
  • Akgün A., Dağ S., Bulut F., (2008), Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models, Environmental Geology, 54, 1127-1143.
  • Akgün A., Sezer E.A., Nefeslioğlu H.A., Gökçeoğlu C., Pradhan B., (2012), An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm, Computers and Geosciences, 38(1), 23-34.
  • Alemdağ S., Akgün A., Kaya A., Gökçeoğlu C., (2014), A large and rapid planar failure: causes, mechanism and consequences (Mordut, Gumushane, Turkey), Arabian Journal of Geoscience, 7(3), 1205-1221.
  • Alemdağ S., Kaya A., Karadağ M., Gürocak Z., Bulut F., (2015), Utilization of the limit equilibrium and finite element methods for the stability analysis of the slope debris: an example of the Kalebasi district (NE Turkey), Journal of African Earth Science, 106, 134-146.
  • Althuwaynee O.F., Pradhan B, Lee S., (2012), Application of an evidential belief function model in landslide susceptibility mapping, Computers and Geosciences, 44, 120-135.
  • ASTM, (2005), Standard test methods for liquid limit, plastic limit and plasticity index of soils, Annual Book of ASTM Standards, ASTM D4318, Philedelphia, USA.
  • ASTM, (2006), Standard practice for classification of soils for engineering purposes (Unified Soil Classification System), Annual Book of ASTM Standards, ASTM D2487, Philedelphia, USA.
  • ASTM, (2007), Standard test method for particle-size analysis of soils, Annual Book of ASTM Standards, ASTM D422, Philedelphia, USA.
  • ASTM, (2009), Standard test methods for laboratory determination of density (unit weight) of soil specimens, Annual Book of ASTM Standards, ASTM D7263-09, Philedelphia, USA.
  • ASTM, (2017), Standard test method for consolidated undrained direct simple shear testing of fine grain soils, Annual Book of ASTM Standards, ASTM D6528-17, Philedelphia, USA.
  • Avşar O., Akgun H., Kockar M.K., (2014), Investigation of the failure mechanism and stabilization of a landslide in weathered tuffite, Giresun, northeastern Turkey, Environmental Earth Science, 72, 3723-3740.
  • Ayalew L., Yamagishi H., Ugawa N., (2004), Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano river, Niigate prefecture, Japan, Landslides, 1, 73-81.
  • Castellanos Abella E.A., Van Westen C.J., (2007), Generation of a landslide risk index map for Cuba using spatial multi-criteria evaluation, Landslides, 4, 311-325.
  • Çan T., Nefeslioğlu H.A., Gökçeoğlu C., Sönmez H., Duman T.Y., (2005), Susceptibility assessments of shallow earthflows triggered by heavy rainfall at three catchments by logistic regression analyses, Geomorphology, 72, 250-271.
  • Dağ S., (2007), Çayeli (Rize) ve çevresinin istatistiksel yöntemlerle heyelan duyarlılık analizi, Doktora Tezi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon, Türkiye.
  • Dağ S., Bulut F., (2012), Coğrafi bilgi sistemleri tabanlı heyelan duyarlılık haritalarının hazırlanmasına bir örnek: Çayeli (Rize, KD Türkiye), Jeoloji Mühendisliği Dergisi, 36(1), 35-62.
  • Ercanoğlu M., Gökçeoğlu C., (2002), Assessment of landslide susceptibility for a landslide-prone area (North of Yenice, NW Turkey) by fuzzy approach, Environmental Geology, 41, 720-730.
  • Gökçeoğlu C., Aksoy H., (1996), Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and ımage processing techniques, Engineering Geology, 44, 147-161.
  • Gürocak Z., Alemdağ S., Zaman M., (2008), Rock slope stability and excavatability assessment of rocks at the Kapikaya dam site eastern Turkey, Engineering Geology, 96(1-2), 17-27.
  • Güven İ.H., (1993), Doğu Pontidlerin jeolojisi ve 1/250000 ölçekli komplikasyonu, MTA, Ankara.
  • Jeldes I., Vence N., Drumm E., (2013), An approximate solution to the Sokolovskiıˇ concave slope at limiting equilibrium, International Journal of Geomechanics, 15(2), 1-8.
  • Kahatadeniya K.S., Nanakorn P., Neaupane K.M., (2009), Determination of the critical failure surface for slope stability analysis using antcolony optimization, Engineering Geology, 108, 133-141.
  • Kaya A., Akgün A., Karaman K., Bulut F., (2015), Understanding the mechanism of a slope failure on nearby a highway tunnel route by different slope stability analysis methods: a case from NE Turkey, Bulletin of Engineering Geology and the Environment, 75(3), 945-958.
  • Kaya A., Alemdağ S., Dağ S., Gürocak Z., (2016), Stability assesment of high steep cut slope debris on a landslide Gumushane NE Turkey, Bulletin of Engineering Geology and the Environment, 75(1), 89-99.
  • Kaya A., Bulut F, Dağ S., (2018), Bearing capacity and slope stability assessment of rock masses at the Subasi viaduct site, NE Turkey, Arabian Journal of Geoscience, doi: 10.1007/s12517-018-3477-7.
  • Ketin İ., (1966), Tectonic units of Anatolia, Journal of General Directorate of Mineral Research and Exploration (MTA), 66, 23-34.
  • Kıncal C., Akgün A., Koca M.Y., (2009), Landslide susceptibility assessment in the Izmir (West Anatolia, Turkey) city center and its near vicinity by the logistic regression method, Environmental Earth Sciences, 59, 745-756.
  • Lee S., (2005), Application of logistic regression model and ıts validation for landslide susceptibility mapping using GIS and remote sensing data, International Journal of Remote Sensing, 26(7), 1477-1491.
  • Liu F., Zhao J., (2013), Limit analysis of slope stability by rigid finite element method and linear programming considering rotational failure, International Journal of Geomechanics, 13(6), 827-839.
  • Mines Branch, Canada, (1972), Tentative design guide for mine waste embankments in Canada, Department of Energy, Mines and Resources, Canada.
  • Nefeslioğlu H.A., Gökçeoğlu C., Sönmez H., (2008), An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps, Engineering Geology, 97, 171-191.
  • Ösna T., Sezer E.A., Akgün A., (2014), GEOFIS: an integrated tool for the assessment of landslide susceptibility, Computers and Geosciences, 66, 20-30.
  • Pradhan B., Sezer E.A., Gökçeoğlu C., Buchroithner M.F., (2010), Landslide susceptibility mapping by neuro-fuzzy approach in a landslide prone area (Cameron Highland, Malaysia), IEEE Transactions on Geosciences Remote Sensing, 48(12), 4164-4177.
  • Reichenbacha P., Rossia M., Malamudb B.D., Mihirb M., Guzzettia F., (2018), A review of statistically-based landslide susceptibility models, Earth-Science Reviews, 180, 60-91.
  • Rocscience, (2011a), Slide v6.0, 2D limit equilibrium slope stability analysis, Rocscience Inc., Toronto, Ontario, Canada.
  • Rocscience, (2011b), Phase2 v8.0 finite element analysis for excavations and slopes, Rocscience Inc., Toronto, Ontario, Canada.
  • Romer C., Ferentinou M., (2016), Shallow landslide susceptibility assessment in a semiarid environment—A Quaternary catchment of KwaZulu-Natal, South Africa, Engineering Geology, 201, 29-44.
  • Samia J., Temme A., Bregt A., Wallinga J., Guzzetti F., Ardizzone F., Rossi M., (2017), Characterization and quantification of path dependency in landslide susceptibility, Geomorphology, 292, 16-24.
  • Sezer E.A., Pradhan B., Gökçeoğlu C., (2011), Manifestation of an adaptive neuro-fuzzy model on landslide susceptibility mapping: Klang valley, Malaysia, Expert Systems and Applications, 38(7), 8208-8219.
  • Varnes D.J., (1978), Slope movement types and processes, Landslides-analysis and control: National Research Council, Transportation Research Board, Washington D.C., 176ss.
  • Yeşilnacar E., Topal T., (2005), Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey), Engineering Geology, 79, 251-266.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Ayberk KAYA

Cem DEMİRBAŞ

Serhat DAĞ

Yayımlanma Tarihi 13 Temmuz 2018
Gönderilme Tarihi 23 Nisan 2018
Kabul Tarihi 25 Haziran 2018
Yayımlandığı Sayı Yıl 2018Cilt: 4 Sayı: 2

Kaynak Göster

APA KAYA, A., DEMİRBAŞ, C., & DAĞ, S. (2018). Gündoğan (Ardeşen-Rize) Köyü Yerleşim Alanındaki Yamaç Duraysızlığının Jeoteknik Açıdan İncelenmesi. Doğal Afetler Ve Çevre Dergisi, 4(2), 221-235. https://doi.org/10.21324/dacd.417920
AMA KAYA A, DEMİRBAŞ C, DAĞ S. Gündoğan (Ardeşen-Rize) Köyü Yerleşim Alanındaki Yamaç Duraysızlığının Jeoteknik Açıdan İncelenmesi. Doğ Afet Çev Derg. Temmuz 2018;4(2):221-235. doi:10.21324/dacd.417920
Chicago KAYA, Ayberk, Cem DEMİRBAŞ, ve Serhat DAĞ. “Gündoğan (Ardeşen-Rize) Köyü Yerleşim Alanındaki Yamaç Duraysızlığının Jeoteknik Açıdan İncelenmesi”. Doğal Afetler Ve Çevre Dergisi 4, sy. 2 (Temmuz 2018): 221-35. https://doi.org/10.21324/dacd.417920.
EndNote KAYA A, DEMİRBAŞ C, DAĞ S (01 Temmuz 2018) Gündoğan (Ardeşen-Rize) Köyü Yerleşim Alanındaki Yamaç Duraysızlığının Jeoteknik Açıdan İncelenmesi. Doğal Afetler ve Çevre Dergisi 4 2 221–235.
IEEE A. KAYA, C. DEMİRBAŞ, ve S. DAĞ, “Gündoğan (Ardeşen-Rize) Köyü Yerleşim Alanındaki Yamaç Duraysızlığının Jeoteknik Açıdan İncelenmesi”, Doğ Afet Çev Derg, c. 4, sy. 2, ss. 221–235, 2018, doi: 10.21324/dacd.417920.
ISNAD KAYA, Ayberk vd. “Gündoğan (Ardeşen-Rize) Köyü Yerleşim Alanındaki Yamaç Duraysızlığının Jeoteknik Açıdan İncelenmesi”. Doğal Afetler ve Çevre Dergisi 4/2 (Temmuz 2018), 221-235. https://doi.org/10.21324/dacd.417920.
JAMA KAYA A, DEMİRBAŞ C, DAĞ S. Gündoğan (Ardeşen-Rize) Köyü Yerleşim Alanındaki Yamaç Duraysızlığının Jeoteknik Açıdan İncelenmesi. Doğ Afet Çev Derg. 2018;4:221–235.
MLA KAYA, Ayberk vd. “Gündoğan (Ardeşen-Rize) Köyü Yerleşim Alanındaki Yamaç Duraysızlığının Jeoteknik Açıdan İncelenmesi”. Doğal Afetler Ve Çevre Dergisi, c. 4, sy. 2, 2018, ss. 221-35, doi:10.21324/dacd.417920.
Vancouver KAYA A, DEMİRBAŞ C, DAĞ S. Gündoğan (Ardeşen-Rize) Köyü Yerleşim Alanındaki Yamaç Duraysızlığının Jeoteknik Açıdan İncelenmesi. Doğ Afet Çev Derg. 2018;4(2):221-35.

Creative Commons License
Doğal Afetler ve Çevre Dergisi, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License ile lisanlanmıştır.