Araştırma Makalesi
BibTex RIS Kaynak Göster

Ege ve Akdeniz Kıyılarında Seçilen İstasyonlarda Deniz Suyu Sıcaklıkları İçin Soğuma Dönemi Trend Analizleri

Yıl 2019, Cilt: 5 Sayı: 2, 291 - 304, 31.07.2019
https://doi.org/10.21324/dacd.492730

Öz

Eğilim araştırmalarında regresyon analizi ve sıklıkla kullanılan Mann-Kendall (MK) yöntemi gibi klasik yaklaşımlar kısıtları ve varsayımları sebebiyle bağlayıcı şartları ve ürettikleri bilgi açısından da ihtiyacı karşılayamamasına bağlı olarak yavaş yavaş terk edilmektedirler. Eğilimler için regresyon yaklaşımının kullanılabilmesi ve doğru sonuçlar alınabilmesi için verilerin normal dağılıma uyması, iç bağımlılık (otokorelasyon) olmaması, ölçümlerin hatasız olması, eşit varyans, doğrusallık kabullerinin her
birinin analiz
öncesinden araştırılması gerekir. Mann-Kendall yöntemi içinde buna benzer
zorluklar olup, sonu
çları açısından eğilim yok, artan eğilim veya azalan eğilim şeklinde kısıtlı bilgi üretilmektedir. Bu zorluk
ve eksiklere iyi bir se
çenek olarak geliştirilen herhangi bir
varsay
ıma bağlı olmadan doğrudan uygulanabilen Yenilikçi Eğilim Çözümlemesi (YEÇ) (Şen, 2012) yöntemi ve algoritması bu çalışmada temel alınarak, deniz suyu sıcaklık verilerindeki eğilim ve bu eğilimin matematik formu incelenmiştir. Ortaya konulan model ile farklı istasyonlardaki ortalama eğilim gidişleri kıyaslanabilmiştir. Yapılan çözümleme sonucunda, 1960-2009 yılları arasında 4 istasyonda Eylül ayından Şubat ayına kadar kaydedilen deniz suyu sıcaklık verilerinde,
2000-2009 d
önemine doğru artış eğilimi görülmektedir. Özellikle iklim değişikliğinden en fazla
etkilenecek b
ölge olan Akdeniz için, 2000-2009 sürecindeki eğilim çok dikkat çekicidir. Ancak, model
grafikleri incelendi
ğinde, referans yıl olarak seçilen 1960-1969 yılına göre 4 farklı süreçte (1970-1979, 1980-1989, 1990-1999, 2000-2009)
ortaya
çıkan azalma eğilimleri, iklim değişikliği gerçeğine bağlı olarak, 1960-1969 yılları verilerinin tarafsızlığının sorgulanmasını akla getirmektedir.

Kaynakça

  • Al-Rashidi T.B., El-Gamily, H.I., Amos, C.L., Rakha K.A., (2009), Sea surface temperature trends in Kuwait bay, Arabian Gulf, Natural Hazards, 50(1), 73-82.
  • Barbosa S.M., Andersen O.B., (2009), Trend patterns in global sea surface temperature, International Journal of Climatology, 29(14), 2049-2055.
  • Cane M.A., Clement A.C., Kaplan A., Kushnir Y., Pozdnyakov D., Seager R., Murtugudde R., (1997), Twentieth-century sea surface temperature trends, Science, 275(5302), 957-960.
  • Chu C., Jones N.E., Piggott A.R., Buttle J.M., (2009), Evaluation of a Simple Method to Classify the Thermal Characteristics of Streams Using a Nomogram of Daily Maximum Air and Water Temperatures, North American Journal of Fisheries Management, 29(1993), 1605–1619.
  • Dabanlı İ., Şen Z., Yeleğen M.Ö., Şişman E., Selek B., Güçlü Y.S., (2016), Trend assessment by the innovative-Şen method, Water Resour Manag, 30(14), 5193–5203.
  • Deser C., Alexander M.A., Xie S., Phillips A.S., (2010), Sea surface temperature variability: Patterns and mechanisms, Annual Review of Marine Science, 2(1), 115-143.
  • Dogan M., Cigizoglu H. K., Sanli D.U., Ulke A., (2014), Investigation of sea level anomalies related with NAO along the west coasts of Turkey and their consistency with sea surface temperature trends, Theoretical and Applied Climatology, 121(1), 349-358.
  • Gil-Alana L.A., (2015), Linear and segmented trends in sea surface temperature data, Journal of Applied Statistics, 42(7), 1531-1546.
  • Goikoetxea N., Borja Á., Fontán A., González M., Valencia V., (2009), Trends and anomalies in sea-surface temperature observed over the last 60 years within the southeastern Bay of Biscay, Continental Shelf Research, 29(8), 1060-1069.
  • Gómez‐Gesteira M., Decastro M., Alvarez I., Gómez‐Gesteira J.L., (2008), Coastal sea surface temperature warming trend along the continental part of the Atlantic Arc (1985–2005), Journal of Geophysical Research: Oceans, 113(C4), C04010:1-9.
  • Gómez-Gesteira M., Gimeno L., Decastro M., Lorenzo M.N., Alvarez I., Nieto R., Gómez-Gesteira J.L., (2011), The state of climate in NW Iberia, Climate Research, 48(2/3), 109-144.
  • Güçlü Y., (2013), Sea surface temperature anomalies along the Black Sea Region coast of Turkey (1971-2010 period), Journal of Human Sciences, 10(1), 863-896.
  • Güçlü Y.S., (2016), Comments on “Comparison of Mann–Kendall and innovative trend method for water quality parameters of the Kizilirmak River. Turkey (Kisi and Ay. 2014)” and “An innovative method for trend analysis of monthly pan evaporations (Kisi. 2015)”, Journal of Hydrology, 538, 878-882.
  • Güçlü Y.S., Şişman E., Yeleğen M.Ö., (2018), Climate change and frequency–intensity–duration (FID) curves for Florya station Istanbul, Journal of Flood Risk Management, 11(S1), S403-S418.
  • Güçlü Y.S., (2018), Alternative Trend Analysis: Half Time Series Methodology, Water Resources Management, 32(7), 2489-2504.
  • Haktanir T., Citakoglu H., (2014), Trend independence stationarity and homogeneity tests on maximum rainfall series of standard durations recorded in Turkey, J. Hydrol. Eng., 19(9), doi:10.1061/(ASCE)HE.1943-5584.0000973.
  • Haylock M.R., Peterson T.C., Alves L.M., Ambrizzi T., Anunciação Y.M.T., Baez J., Vincent L.A., (2006), Trends in total and extreme South American rainfall in 1960-2000 and links with sea surface temperature, Journal of Climate, 19(8), 1490-1512.
  • Houghton JT., Filho LGM., Callander BA., Harris N., Kattenberg A., Maskell K., (1996), Climate Change 1995: The Science of Climate Change, Cambridge University Press: Cambridge. UK.
  • Johannessen O.M., Bengtsson L., Miles M.W., Kuzmina S.I., Semenov. V.A., Alekseev G.V., Cattle H.P., (2004), Arctic climate change: Observed and modelled temperature and sea‐ice variability. Tellus A, 56(4), 328-341.
  • Jonsdottir J.F., Jonsson P., Uvo C.B., (2006), Trend analysis of Icelandic discharge. precipitation and temperature series, Nord. Hydrol., 37(4–5), 365–376.
  • Kadioğlu M., Şen Z., Gültekin L., (2001), Variations and trends in Turkish seasonal heating and cooling degree-days, Climatic Change, 49(1), 209-223.
  • Kaplan A., Cane M.A., Kushnir Y., Clement A.C., Blumenthal M.B., Rajagopalan B., (1998), Analyses of global sea surface temperature 1856–1991, Journal of Geophysical Research, 103(C9), 18567-18589.
  • Kazmin A.S., Zatsepin A.G., (2007), Long term variability of surface temperature in the Black Sea and its connection with the large scale atmospheric forcing, J Mar Syst, 68, 293–301.
  • Markus M., Demissie M., Short M., Verma S., Cooke R., (2014), Sensitivity Analysis of Annual Nitrate Loads and the Corresponding Trends in the Lower Illinois River, Journal of Hydrologic Engineering, 19(3), 533-543.
  • Moron V., Vautard R., Ghil M., (1998), Trends. interdecadal and interannual oscillations in global sea-surface temperatures, Climate Dynamics, 14(7), 545-569.
  • Ozgenc A., (2017), A Investigation of sea level trends and the effect of the north atlantic oscillation (NAO) on the black sea and the eastern mediterranean sea, Theor Appl Climatol, 129(1-2), 129-137.
  • Park K., Lee E., Chang E., Hong S., (2015), Spatial and temporal variability of sea surface temperature and warming trends in the yellow sea, Journal of Marine Systems, 143, 24-38.
  • Revelle R., (1983), Probable future changes in sea-level resulting from increased atmospheric carbon dioxide, National Academy Press. Changing Climate. 8. Chapter, Washington.
  • Robertson R., Visbeck M., Gordon A.L., Fahrbach E., (2002)., Long-term temperature trends in the deep waters of the Weddell Sea, Deep-Sea Research Part II, 49(21), 4791-4806.
  • Saplioglu K., Kilit M., Bekir Y.K., (2014), Trend Analysis of Streams in the Western Mediterranean Basin of Turkey, Fresenius Environmental Bulletin, 23(1A), 313-324.
  • Sen Z., (2012), Innovative trend analysis methodology, J. Hydrol. Eng, 17 (9), 1042–1046.
  • Sen Z., (2014), Trend identification simulation and application, J. Hydrol. Eng, 19 (3), 635–642.
  • Shaltout M., Omstedt A., (2014), Recent sea surface temperature trends and future scenarios for the Mediterranean Sea, Oceanologia, 56(3), 411-443.
  • Timbadiya P., Mirajkar A., Patel P., Porey P., (2013), Identification of trend and probability distribution for time series of annual peak flow in Tapi Basin India. ISH Journal of Hydraulic Engineering, 19(1), 11-20.
  • Zveryaev I.I., (2015), Seasonal differences in intraseasonal and interannual variability of Mediterranean Sea surface temperature, Journal of Geophysical Research C: Oceans, 120(4), 2813-2825.

Trend Analysis for the Cooling Period for Sea Water Temperatures in Aegean and Mediterranean Coasts

Yıl 2019, Cilt: 5 Sayı: 2, 291 - 304, 31.07.2019
https://doi.org/10.21324/dacd.492730

Öz

In trend studies, classical approaches such as
regression analysis and frequently used Mann-Kendall (MK) methods are bound to
lose their usage due to their limitations and assumptions, due to their
inability to meet their requirements in terms of binding conditions and
knowledge. In order to use the regression approach for the trends and to obtain
correct results, the data should fit into normal distribution, there is no
internal dependency (autocorrelation), the measurements are accurate, equal
variance, linearity acceptances should be investigated before each analysis. There
are similar difficulties in the Mann-Kendall method, which results in no trend,
increasing or decreasing trend insufficiency in engineering practices. In this
study, the trends in Sea Surface Temperature (SST) and their mathematical structures
are examined. The trends in different stations are compared with the suggested
model. SST was recorded at four stations between 1960 and 2009.The increasing
trend towards the period of 2000-2009 shows itself. The trends during of
2000-2009 period is especially striking for the Mediterranean region. However,
when the model graphs are examined, there are decreasing trends that emerged in
4 different durations (1970-1979, 1980-1989, 1990-1999, 2000-2009) compared to
the 1960-1969 duration, which was selected as the reference year. Depending on
the reality of climate change, the neutrality of the observed data 1960-1969
should be questioned
.


Kaynakça

  • Al-Rashidi T.B., El-Gamily, H.I., Amos, C.L., Rakha K.A., (2009), Sea surface temperature trends in Kuwait bay, Arabian Gulf, Natural Hazards, 50(1), 73-82.
  • Barbosa S.M., Andersen O.B., (2009), Trend patterns in global sea surface temperature, International Journal of Climatology, 29(14), 2049-2055.
  • Cane M.A., Clement A.C., Kaplan A., Kushnir Y., Pozdnyakov D., Seager R., Murtugudde R., (1997), Twentieth-century sea surface temperature trends, Science, 275(5302), 957-960.
  • Chu C., Jones N.E., Piggott A.R., Buttle J.M., (2009), Evaluation of a Simple Method to Classify the Thermal Characteristics of Streams Using a Nomogram of Daily Maximum Air and Water Temperatures, North American Journal of Fisheries Management, 29(1993), 1605–1619.
  • Dabanlı İ., Şen Z., Yeleğen M.Ö., Şişman E., Selek B., Güçlü Y.S., (2016), Trend assessment by the innovative-Şen method, Water Resour Manag, 30(14), 5193–5203.
  • Deser C., Alexander M.A., Xie S., Phillips A.S., (2010), Sea surface temperature variability: Patterns and mechanisms, Annual Review of Marine Science, 2(1), 115-143.
  • Dogan M., Cigizoglu H. K., Sanli D.U., Ulke A., (2014), Investigation of sea level anomalies related with NAO along the west coasts of Turkey and their consistency with sea surface temperature trends, Theoretical and Applied Climatology, 121(1), 349-358.
  • Gil-Alana L.A., (2015), Linear and segmented trends in sea surface temperature data, Journal of Applied Statistics, 42(7), 1531-1546.
  • Goikoetxea N., Borja Á., Fontán A., González M., Valencia V., (2009), Trends and anomalies in sea-surface temperature observed over the last 60 years within the southeastern Bay of Biscay, Continental Shelf Research, 29(8), 1060-1069.
  • Gómez‐Gesteira M., Decastro M., Alvarez I., Gómez‐Gesteira J.L., (2008), Coastal sea surface temperature warming trend along the continental part of the Atlantic Arc (1985–2005), Journal of Geophysical Research: Oceans, 113(C4), C04010:1-9.
  • Gómez-Gesteira M., Gimeno L., Decastro M., Lorenzo M.N., Alvarez I., Nieto R., Gómez-Gesteira J.L., (2011), The state of climate in NW Iberia, Climate Research, 48(2/3), 109-144.
  • Güçlü Y., (2013), Sea surface temperature anomalies along the Black Sea Region coast of Turkey (1971-2010 period), Journal of Human Sciences, 10(1), 863-896.
  • Güçlü Y.S., (2016), Comments on “Comparison of Mann–Kendall and innovative trend method for water quality parameters of the Kizilirmak River. Turkey (Kisi and Ay. 2014)” and “An innovative method for trend analysis of monthly pan evaporations (Kisi. 2015)”, Journal of Hydrology, 538, 878-882.
  • Güçlü Y.S., Şişman E., Yeleğen M.Ö., (2018), Climate change and frequency–intensity–duration (FID) curves for Florya station Istanbul, Journal of Flood Risk Management, 11(S1), S403-S418.
  • Güçlü Y.S., (2018), Alternative Trend Analysis: Half Time Series Methodology, Water Resources Management, 32(7), 2489-2504.
  • Haktanir T., Citakoglu H., (2014), Trend independence stationarity and homogeneity tests on maximum rainfall series of standard durations recorded in Turkey, J. Hydrol. Eng., 19(9), doi:10.1061/(ASCE)HE.1943-5584.0000973.
  • Haylock M.R., Peterson T.C., Alves L.M., Ambrizzi T., Anunciação Y.M.T., Baez J., Vincent L.A., (2006), Trends in total and extreme South American rainfall in 1960-2000 and links with sea surface temperature, Journal of Climate, 19(8), 1490-1512.
  • Houghton JT., Filho LGM., Callander BA., Harris N., Kattenberg A., Maskell K., (1996), Climate Change 1995: The Science of Climate Change, Cambridge University Press: Cambridge. UK.
  • Johannessen O.M., Bengtsson L., Miles M.W., Kuzmina S.I., Semenov. V.A., Alekseev G.V., Cattle H.P., (2004), Arctic climate change: Observed and modelled temperature and sea‐ice variability. Tellus A, 56(4), 328-341.
  • Jonsdottir J.F., Jonsson P., Uvo C.B., (2006), Trend analysis of Icelandic discharge. precipitation and temperature series, Nord. Hydrol., 37(4–5), 365–376.
  • Kadioğlu M., Şen Z., Gültekin L., (2001), Variations and trends in Turkish seasonal heating and cooling degree-days, Climatic Change, 49(1), 209-223.
  • Kaplan A., Cane M.A., Kushnir Y., Clement A.C., Blumenthal M.B., Rajagopalan B., (1998), Analyses of global sea surface temperature 1856–1991, Journal of Geophysical Research, 103(C9), 18567-18589.
  • Kazmin A.S., Zatsepin A.G., (2007), Long term variability of surface temperature in the Black Sea and its connection with the large scale atmospheric forcing, J Mar Syst, 68, 293–301.
  • Markus M., Demissie M., Short M., Verma S., Cooke R., (2014), Sensitivity Analysis of Annual Nitrate Loads and the Corresponding Trends in the Lower Illinois River, Journal of Hydrologic Engineering, 19(3), 533-543.
  • Moron V., Vautard R., Ghil M., (1998), Trends. interdecadal and interannual oscillations in global sea-surface temperatures, Climate Dynamics, 14(7), 545-569.
  • Ozgenc A., (2017), A Investigation of sea level trends and the effect of the north atlantic oscillation (NAO) on the black sea and the eastern mediterranean sea, Theor Appl Climatol, 129(1-2), 129-137.
  • Park K., Lee E., Chang E., Hong S., (2015), Spatial and temporal variability of sea surface temperature and warming trends in the yellow sea, Journal of Marine Systems, 143, 24-38.
  • Revelle R., (1983), Probable future changes in sea-level resulting from increased atmospheric carbon dioxide, National Academy Press. Changing Climate. 8. Chapter, Washington.
  • Robertson R., Visbeck M., Gordon A.L., Fahrbach E., (2002)., Long-term temperature trends in the deep waters of the Weddell Sea, Deep-Sea Research Part II, 49(21), 4791-4806.
  • Saplioglu K., Kilit M., Bekir Y.K., (2014), Trend Analysis of Streams in the Western Mediterranean Basin of Turkey, Fresenius Environmental Bulletin, 23(1A), 313-324.
  • Sen Z., (2012), Innovative trend analysis methodology, J. Hydrol. Eng, 17 (9), 1042–1046.
  • Sen Z., (2014), Trend identification simulation and application, J. Hydrol. Eng, 19 (3), 635–642.
  • Shaltout M., Omstedt A., (2014), Recent sea surface temperature trends and future scenarios for the Mediterranean Sea, Oceanologia, 56(3), 411-443.
  • Timbadiya P., Mirajkar A., Patel P., Porey P., (2013), Identification of trend and probability distribution for time series of annual peak flow in Tapi Basin India. ISH Journal of Hydraulic Engineering, 19(1), 11-20.
  • Zveryaev I.I., (2015), Seasonal differences in intraseasonal and interannual variability of Mediterranean Sea surface temperature, Journal of Geophysical Research C: Oceans, 120(4), 2813-2825.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Eyüp Şişman 0000-0003-3696-9967

Yayımlanma Tarihi 31 Temmuz 2019
Gönderilme Tarihi 5 Aralık 2018
Kabul Tarihi 5 Şubat 2019
Yayımlandığı Sayı Yıl 2019Cilt: 5 Sayı: 2

Kaynak Göster

APA Şişman, E. (2019). Ege ve Akdeniz Kıyılarında Seçilen İstasyonlarda Deniz Suyu Sıcaklıkları İçin Soğuma Dönemi Trend Analizleri. Doğal Afetler Ve Çevre Dergisi, 5(2), 291-304. https://doi.org/10.21324/dacd.492730
AMA Şişman E. Ege ve Akdeniz Kıyılarında Seçilen İstasyonlarda Deniz Suyu Sıcaklıkları İçin Soğuma Dönemi Trend Analizleri. Doğ Afet Çev Derg. Temmuz 2019;5(2):291-304. doi:10.21324/dacd.492730
Chicago Şişman, Eyüp. “Ege Ve Akdeniz Kıyılarında Seçilen İstasyonlarda Deniz Suyu Sıcaklıkları İçin Soğuma Dönemi Trend Analizleri”. Doğal Afetler Ve Çevre Dergisi 5, sy. 2 (Temmuz 2019): 291-304. https://doi.org/10.21324/dacd.492730.
EndNote Şişman E (01 Temmuz 2019) Ege ve Akdeniz Kıyılarında Seçilen İstasyonlarda Deniz Suyu Sıcaklıkları İçin Soğuma Dönemi Trend Analizleri. Doğal Afetler ve Çevre Dergisi 5 2 291–304.
IEEE E. Şişman, “Ege ve Akdeniz Kıyılarında Seçilen İstasyonlarda Deniz Suyu Sıcaklıkları İçin Soğuma Dönemi Trend Analizleri”, Doğ Afet Çev Derg, c. 5, sy. 2, ss. 291–304, 2019, doi: 10.21324/dacd.492730.
ISNAD Şişman, Eyüp. “Ege Ve Akdeniz Kıyılarında Seçilen İstasyonlarda Deniz Suyu Sıcaklıkları İçin Soğuma Dönemi Trend Analizleri”. Doğal Afetler ve Çevre Dergisi 5/2 (Temmuz 2019), 291-304. https://doi.org/10.21324/dacd.492730.
JAMA Şişman E. Ege ve Akdeniz Kıyılarında Seçilen İstasyonlarda Deniz Suyu Sıcaklıkları İçin Soğuma Dönemi Trend Analizleri. Doğ Afet Çev Derg. 2019;5:291–304.
MLA Şişman, Eyüp. “Ege Ve Akdeniz Kıyılarında Seçilen İstasyonlarda Deniz Suyu Sıcaklıkları İçin Soğuma Dönemi Trend Analizleri”. Doğal Afetler Ve Çevre Dergisi, c. 5, sy. 2, 2019, ss. 291-04, doi:10.21324/dacd.492730.
Vancouver Şişman E. Ege ve Akdeniz Kıyılarında Seçilen İstasyonlarda Deniz Suyu Sıcaklıkları İçin Soğuma Dönemi Trend Analizleri. Doğ Afet Çev Derg. 2019;5(2):291-304.

Creative Commons License
Doğal Afetler ve Çevre Dergisi, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License ile lisanlanmıştır.