Araştırma Makalesi
BibTex RIS Kaynak Göster

Sustainable Architectural Design Under the Effect of Global Warming

Yıl 2022, Cilt: 8 Sayı: 2, 317 - 328, 30.07.2022
https://doi.org/10.21324/dacd.1045444

Öz

Urbanization is increasing under the influence of many factors and the need for shelter cannot be met. The resulting building stock causes agglomeration in urban areas. Climate change caused by urban agglomeration leads to global temperature change. Temperature increases are experienced by urbanization, which produces latent heat. With global warming comes climate change. In the changing climate, the present and future thermal performances of buildings should be considered in the architectural design process. Sustainable architectural design, planning and material selection will ensure that the CO2 emission rate of the building sector, which plays an active role in global warming, will change positively by using existing resources effectively and efficiently by considering future generations. In this research article, answers are sought to the questions of what kind of a process architectural design should be under the influence of global warming and how the sustainability of the design can be ensured. For this reason, by proposing Biophilic Design, it has been determined that the need for air conditioning and energy consumption will decrease, and thus more sustainable cities will emerge by reducing greenhouse gas and gaseous reactive nitrogen compounds emissions. As a result of this study, the importance of emergency action plans and long-term strategies for climate problems along with a sustainable architectural design model is revealed.

Kaynakça

  • Azami A., (2005), Badgir in traditional Iranian architecture, International Conference Passive and Low Energy Cooling for the Built Environment, 19-21 May, Santorini, Greece ss.1021-1026.
  • Bonine M.E., (2016), From uruk to casablanca, J. Urban Hist. 3 (2), 141–180.
  • Brown J.B., Hanson M.E., Liverman D.M., Merideth R.W., (1987), Global sustainability: toward definition, Environ. Manag. 11, 713–719.
  • Brundtland G.H., (1987), Our common Future, Report of the World Commission on Environment and Development, https://www.are.admin.ch/dam/are/en/dokumente/nachhaltige_entwicklung/dokumente/bericht/our_common_futurebrundtlandreport1987.pdf.download.pdf/our_common_futurebrundtlandreport1987.pdf, [Erişim 04 Aralık 2021].
  • Cabanek A., Baro M., Newman P., (2020), Biophilic Streets: A Design Framewoork for Creating Multiple Urban Benefits, Sustainable Earth, 2-17.
  • Churkina G., Organschi A., Reyer C.P.O., Ruff A., Vinke K., Liu Z., Reck B.K., Graedel T.E., Schellnhuber H.J., (2020), Buildings as a global carbon sink, Nature Sustainability, 3, 269–276.
  • Cugurullo F., (2016), Urban eco-modernisation and the policy context of new eco-city projects: where Masdar City fails and why, Urban Studies, 53(11), 2417–2433.
  • Çalışkan O., (2004), Sürdürülebilir Kent Formu: Derişik Kent, Planlama Dergisi, 3, 33- 54.
  • Erim A., (2008), RIBA İklim Değişikliği Bilgi Notu, TMMOB Mimarlar Odası Belgeler Bülteni, 11, 18-26.
  • Estaji H., (2017), A Review of Flexibility and Adaptability in Housing Design, International Journal of Contemporary Architecture, 4(2), 37-49.
  • Fallmann J., Lewis H., Castillo J.M., Arnold A., Ramsdale S., (2017), Impact of sea surface temperature on stratiform cloud formation over the North Sea, Geophysical Research Letters, 44(9), 4296–4303.
  • Fisher T.R., (1993), Architectural Education as a Design Problem, Harvard Architecture Journal.
  • Foster N., (2001), Green Architecture, Architectural Design, 71(4), John Wiley, London, 152ss.
  • Gustavsson L., Haus S., Lundblad M., Lundstrom A., Ortiz C.A., Sathre R., Truong N.L., Wikberg P.E., (2017), Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels, Renewable and Sustainable Energy Reviews, 67, 612–624.
  • Hill C.A.S., (2019), The environmental consequences concerning the use of timber in the built environment, Frontiers in Built Environment, 5, 129, doi: 10.3389/ fbuil.2019.00129.
  • Huang L., Krigsvoll G., Johansen F., Liu Y., Zhang X., (2018), Carbon emission of global construction sector, Renewable and Sustainable Energy Reviews, 81, 1906–1916.
  • Kaya H., Selçuk Arslan S., (2018), Biyofilik Tasarım ve İyileştiren Mimarlık: Sağlık Yapıları Üzerine Bir Değerlendirme, EJONS International Journal on Mathematic, Engineering and Natural Sciences, 3, 35-47.
  • Kellert S.R., Heerwagen J., Mador M., (2011), Biophilic Design: The Theory, Science and Practice of Bringing Buildings to Life, John Wiley & Sons, New York, NY, 432ss.
  • Kohler N, (1999), The Relevance of the Green Building Challenge: An Obsever’s Perspective, Building Research and Information, 27(4/5), 309-320.
  • Li D., Liao W., Rigden A.J., Liu X., Wang D., Malyshev S., Shevliakova E., (2019), Urban heat island: aerodynamics or imperviousness? Science Advances, 5(4), 4299, doi: 10.1126/sciadv.aau4299.
  • Linhares de Siqueira G., (2015), Klimaadaptive Entwurfsmethodik: eine Untersuchung der Wechselwirkung zwischen Klimadaten, klimagerechten Entwurfsmethoden und dem adaptiven Komfortmodell, Dissertation, HafenCity Universität Hamburg, Germany.
  • Martos A., Pacheco-Torres R., Ordonez J., Jadraque-Gago E., (2016), Towards successful ~ environmental performance of sustainable cities: intervening sectors, A Review, Renewable and Sustainable Energy Reviews, 57, 479–495.
  • Marzluff J.M., Alberti M., Bradley G., Endlicher W., Ryan, C., Shulenberger E., Simon U., ZumBrunnen C., (2008), Urban Ecology: An International Perspective on the Interaction between Humans and Nature, Springer, Boston, MA, 834ss.
  • Mills G., Cleugh H., Emmanuel R., Endlicher W., Erell E., McGranahan G., Ng E., Nickson A., Rosenthal J., Steemer K., (2010), Climate information for improved planning and management of mega cities (needs perspective), Procedia Environmental Sciences, 1, 228–246.
  • Milosevic P., (2004), The concept and principles of sustainable architectural design for national parks in Serbia, Spatium, 11, 91-105.
  • Mollison B., Slay R.M., (1994), Introduction to permaculture, Tagari Publications, Tyalgum. Australia, 216ss.
  • Ömer A.M., (2008), Energy, environment and sustainable development, Renewable and Sustainable Energy Reviews, 12(9), 2265- 2300.
  • Panagopoulos T., Gonzalez Duque J.A., Bostenaru Dan M., (2016), Urban planning with respect to environmental quality and human well-being, Environmental Pollution, 208, 137–144.
  • Salmond J., Sabel C., Vardoulakis S., (2018), Towards the integrated study of urban climate, air pollution, and public health, Climate 6(1), 14, doi:10.3390/cli6010014.
  • Sathre R., O’Connor J., (2010), Meta-analysis of greenhouse gas displacement factors of wood product substitution, Environmental Science & Policy, 13(2), 104–114.
  • Satterthwaite D., (2008), Cities’ contribution to global warming: notes on the allocation of greenhouse gas emissions, Environment & Urbanization, 20(2), 539–549.
  • Sev A., (2009), Sürdürülebilir Mimarlık, YEM Yayınları, Güzel Sanatlar Matbaası, İstanbul, 223ss.
  • UN, (2015), Paris Agreement, United Nations, https://unfccc.int/sites/default/files/english_paris_agreement.pdf [Erişim 08 Kasım 2021].
  • UNCSD (2007), Indicators of Sustainable Development: Guidelines and methodologies, https://sustainabledevelopment.un.org/ content/documents/guidelines.pdf [Erişim 08 Kasım 2021].
  • UNEP, (2019), Emissions Gap Report 2019, United Nations Environment Programme, https://www.unep.org/resources/emissions-gap-report-2019 [Erişim 08 Kasım 2021].
  • URL-1, (2019), World green building Council annual report 2018/19, World Green Building Council, https://www.worldgbc.org/, [Erişim 04 Aralık 2022].
  • URL-2, (2021), İklim değişikliği: 7 grafikte krizin neresindeyiz, her birimiz neler yapabiliriz?, https://www.bbc.com/turkce/haberler-dunya-51133428 [Erişim 08 Kasım 2021].
  • URL-3, (2021), Sustainable architecture, Books Ngram Viewer, https://books.google.com/ngrams/graph?content=sustainable +architecture&year_start=1975&year_end=2008&corpus=15&smoothing=5&share=&direct_url=t1%3B%2Csustainable%20architecture%3B%2Cc0#t1%3B%2Csustainable%2 0architecture%3B%2Cc0-1 [Erişim 08 Kasım 2021].
  • URL-4, (2021), Architecture 2030, https://architecture2030.org/ [Erişim 08 Kasım 2021].
  • URL-5, (2021), Fallingwater Evi (Şelale Evi), https://www.arkitektuel.com/fallingwater-evi-selale-evi/ [Erişim 04 Aralık 2021].
  • Ünlü E., (2017), Mimarlıkta Biyofili Olgusu ve Sağlık Yapıları Örneği, Yüksek Lisans Tezi, Gebze Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Mimarlık Anabilim Dalı, Gebze.
  • Williamson T., Radford A., Bennetts H., (2003), Understanding Sustainable Architecture, Taylor and Francis, London, 176ss.
  • Wilson E.O., (1984), Biophilia, Harvard University Press, Cambridge, 176ss.

Küresel Isınmanın Etkisi Altında Sürdürülebilir Mimari Tasarım

Yıl 2022, Cilt: 8 Sayı: 2, 317 - 328, 30.07.2022
https://doi.org/10.21324/dacd.1045444

Öz

Kentleşme, birçok faktörün etkisi altında kalarak artmakta ve barınma ihtiyacı karşılanamamaktadır. Oluşan bina stoku, kentsel alanlarda yığılmaya sebep olmaktadır. Kentsel yığılmanın sebep olduğu iklim değişikliği, küresel anlamda sıcaklık değişiminin yaşanmasına yol açmaktadır. Gizli ısı üreten kentleşmeyle sıcaklık artışları yaşanmaktadır. Küresel ısınmayla birlikte iklim değişikliği ortaya çıkmaktadır. Değişen iklimde, yapıların bugün ve gelecekteki termal performansları mimari tasarım sürecinde ele alınmalıdır. Sürdürülebilir mimari tasarım, planlama ve malzeme seçiminde gelecek kuşakları düşünerek mevcut kaynakları etkin ve verimli kullanarak küresel ısınmada etkin rol oynayan bina sektörünün ortaya çıkardığı CO2 emisyon oranının olumlu yönde değişmesini sağlayacaktır. Bu araştırma makalesinde, küresel ısınmanın etkisi altında mimari tasarımın nasıl bir süreç olması gerektiği ve yapılan tasarımın sürdürülebilirliğinin nasıl sağlanabileceği sorularına cevap aranmaktadır. Bu sebeple Biyofilik Tasarım önerilerek, iklimlendirme ihtiyacının ve enerji tüketiminin azalacağının ve bu sayede sera gazı ve gaz halindeki reaktif nitrojen bileşikleri emisyonlarının düşürülerek daha sürdürülebilir kentlerin ortaya çıkacağı belirlenmiştir. Bu araştırma makalesinin sonucunda, sürdürülebilir bir mimari tasarım modeli ile birlikte iklim sorunları için acil eylem planlarının ve uzun vadeli stratejilerin önemi ortaya konmaktadır.

Kaynakça

  • Azami A., (2005), Badgir in traditional Iranian architecture, International Conference Passive and Low Energy Cooling for the Built Environment, 19-21 May, Santorini, Greece ss.1021-1026.
  • Bonine M.E., (2016), From uruk to casablanca, J. Urban Hist. 3 (2), 141–180.
  • Brown J.B., Hanson M.E., Liverman D.M., Merideth R.W., (1987), Global sustainability: toward definition, Environ. Manag. 11, 713–719.
  • Brundtland G.H., (1987), Our common Future, Report of the World Commission on Environment and Development, https://www.are.admin.ch/dam/are/en/dokumente/nachhaltige_entwicklung/dokumente/bericht/our_common_futurebrundtlandreport1987.pdf.download.pdf/our_common_futurebrundtlandreport1987.pdf, [Erişim 04 Aralık 2021].
  • Cabanek A., Baro M., Newman P., (2020), Biophilic Streets: A Design Framewoork for Creating Multiple Urban Benefits, Sustainable Earth, 2-17.
  • Churkina G., Organschi A., Reyer C.P.O., Ruff A., Vinke K., Liu Z., Reck B.K., Graedel T.E., Schellnhuber H.J., (2020), Buildings as a global carbon sink, Nature Sustainability, 3, 269–276.
  • Cugurullo F., (2016), Urban eco-modernisation and the policy context of new eco-city projects: where Masdar City fails and why, Urban Studies, 53(11), 2417–2433.
  • Çalışkan O., (2004), Sürdürülebilir Kent Formu: Derişik Kent, Planlama Dergisi, 3, 33- 54.
  • Erim A., (2008), RIBA İklim Değişikliği Bilgi Notu, TMMOB Mimarlar Odası Belgeler Bülteni, 11, 18-26.
  • Estaji H., (2017), A Review of Flexibility and Adaptability in Housing Design, International Journal of Contemporary Architecture, 4(2), 37-49.
  • Fallmann J., Lewis H., Castillo J.M., Arnold A., Ramsdale S., (2017), Impact of sea surface temperature on stratiform cloud formation over the North Sea, Geophysical Research Letters, 44(9), 4296–4303.
  • Fisher T.R., (1993), Architectural Education as a Design Problem, Harvard Architecture Journal.
  • Foster N., (2001), Green Architecture, Architectural Design, 71(4), John Wiley, London, 152ss.
  • Gustavsson L., Haus S., Lundblad M., Lundstrom A., Ortiz C.A., Sathre R., Truong N.L., Wikberg P.E., (2017), Climate change effects of forestry and substitution of carbon-intensive materials and fossil fuels, Renewable and Sustainable Energy Reviews, 67, 612–624.
  • Hill C.A.S., (2019), The environmental consequences concerning the use of timber in the built environment, Frontiers in Built Environment, 5, 129, doi: 10.3389/ fbuil.2019.00129.
  • Huang L., Krigsvoll G., Johansen F., Liu Y., Zhang X., (2018), Carbon emission of global construction sector, Renewable and Sustainable Energy Reviews, 81, 1906–1916.
  • Kaya H., Selçuk Arslan S., (2018), Biyofilik Tasarım ve İyileştiren Mimarlık: Sağlık Yapıları Üzerine Bir Değerlendirme, EJONS International Journal on Mathematic, Engineering and Natural Sciences, 3, 35-47.
  • Kellert S.R., Heerwagen J., Mador M., (2011), Biophilic Design: The Theory, Science and Practice of Bringing Buildings to Life, John Wiley & Sons, New York, NY, 432ss.
  • Kohler N, (1999), The Relevance of the Green Building Challenge: An Obsever’s Perspective, Building Research and Information, 27(4/5), 309-320.
  • Li D., Liao W., Rigden A.J., Liu X., Wang D., Malyshev S., Shevliakova E., (2019), Urban heat island: aerodynamics or imperviousness? Science Advances, 5(4), 4299, doi: 10.1126/sciadv.aau4299.
  • Linhares de Siqueira G., (2015), Klimaadaptive Entwurfsmethodik: eine Untersuchung der Wechselwirkung zwischen Klimadaten, klimagerechten Entwurfsmethoden und dem adaptiven Komfortmodell, Dissertation, HafenCity Universität Hamburg, Germany.
  • Martos A., Pacheco-Torres R., Ordonez J., Jadraque-Gago E., (2016), Towards successful ~ environmental performance of sustainable cities: intervening sectors, A Review, Renewable and Sustainable Energy Reviews, 57, 479–495.
  • Marzluff J.M., Alberti M., Bradley G., Endlicher W., Ryan, C., Shulenberger E., Simon U., ZumBrunnen C., (2008), Urban Ecology: An International Perspective on the Interaction between Humans and Nature, Springer, Boston, MA, 834ss.
  • Mills G., Cleugh H., Emmanuel R., Endlicher W., Erell E., McGranahan G., Ng E., Nickson A., Rosenthal J., Steemer K., (2010), Climate information for improved planning and management of mega cities (needs perspective), Procedia Environmental Sciences, 1, 228–246.
  • Milosevic P., (2004), The concept and principles of sustainable architectural design for national parks in Serbia, Spatium, 11, 91-105.
  • Mollison B., Slay R.M., (1994), Introduction to permaculture, Tagari Publications, Tyalgum. Australia, 216ss.
  • Ömer A.M., (2008), Energy, environment and sustainable development, Renewable and Sustainable Energy Reviews, 12(9), 2265- 2300.
  • Panagopoulos T., Gonzalez Duque J.A., Bostenaru Dan M., (2016), Urban planning with respect to environmental quality and human well-being, Environmental Pollution, 208, 137–144.
  • Salmond J., Sabel C., Vardoulakis S., (2018), Towards the integrated study of urban climate, air pollution, and public health, Climate 6(1), 14, doi:10.3390/cli6010014.
  • Sathre R., O’Connor J., (2010), Meta-analysis of greenhouse gas displacement factors of wood product substitution, Environmental Science & Policy, 13(2), 104–114.
  • Satterthwaite D., (2008), Cities’ contribution to global warming: notes on the allocation of greenhouse gas emissions, Environment & Urbanization, 20(2), 539–549.
  • Sev A., (2009), Sürdürülebilir Mimarlık, YEM Yayınları, Güzel Sanatlar Matbaası, İstanbul, 223ss.
  • UN, (2015), Paris Agreement, United Nations, https://unfccc.int/sites/default/files/english_paris_agreement.pdf [Erişim 08 Kasım 2021].
  • UNCSD (2007), Indicators of Sustainable Development: Guidelines and methodologies, https://sustainabledevelopment.un.org/ content/documents/guidelines.pdf [Erişim 08 Kasım 2021].
  • UNEP, (2019), Emissions Gap Report 2019, United Nations Environment Programme, https://www.unep.org/resources/emissions-gap-report-2019 [Erişim 08 Kasım 2021].
  • URL-1, (2019), World green building Council annual report 2018/19, World Green Building Council, https://www.worldgbc.org/, [Erişim 04 Aralık 2022].
  • URL-2, (2021), İklim değişikliği: 7 grafikte krizin neresindeyiz, her birimiz neler yapabiliriz?, https://www.bbc.com/turkce/haberler-dunya-51133428 [Erişim 08 Kasım 2021].
  • URL-3, (2021), Sustainable architecture, Books Ngram Viewer, https://books.google.com/ngrams/graph?content=sustainable +architecture&year_start=1975&year_end=2008&corpus=15&smoothing=5&share=&direct_url=t1%3B%2Csustainable%20architecture%3B%2Cc0#t1%3B%2Csustainable%2 0architecture%3B%2Cc0-1 [Erişim 08 Kasım 2021].
  • URL-4, (2021), Architecture 2030, https://architecture2030.org/ [Erişim 08 Kasım 2021].
  • URL-5, (2021), Fallingwater Evi (Şelale Evi), https://www.arkitektuel.com/fallingwater-evi-selale-evi/ [Erişim 04 Aralık 2021].
  • Ünlü E., (2017), Mimarlıkta Biyofili Olgusu ve Sağlık Yapıları Örneği, Yüksek Lisans Tezi, Gebze Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Mimarlık Anabilim Dalı, Gebze.
  • Williamson T., Radford A., Bennetts H., (2003), Understanding Sustainable Architecture, Taylor and Francis, London, 176ss.
  • Wilson E.O., (1984), Biophilia, Harvard University Press, Cambridge, 176ss.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Nihal Zengin 0000-0003-2640-0304

Ruşen Yamaçlı 0000-0001-9659-9246

Yayımlanma Tarihi 30 Temmuz 2022
Gönderilme Tarihi 25 Aralık 2021
Kabul Tarihi 15 Mart 2022
Yayımlandığı Sayı Yıl 2022Cilt: 8 Sayı: 2

Kaynak Göster

APA Zengin, N., & Yamaçlı, R. (2022). Küresel Isınmanın Etkisi Altında Sürdürülebilir Mimari Tasarım. Doğal Afetler Ve Çevre Dergisi, 8(2), 317-328. https://doi.org/10.21324/dacd.1045444
AMA Zengin N, Yamaçlı R. Küresel Isınmanın Etkisi Altında Sürdürülebilir Mimari Tasarım. Doğ Afet Çev Derg. Temmuz 2022;8(2):317-328. doi:10.21324/dacd.1045444
Chicago Zengin, Nihal, ve Ruşen Yamaçlı. “Küresel Isınmanın Etkisi Altında Sürdürülebilir Mimari Tasarım”. Doğal Afetler Ve Çevre Dergisi 8, sy. 2 (Temmuz 2022): 317-28. https://doi.org/10.21324/dacd.1045444.
EndNote Zengin N, Yamaçlı R (01 Temmuz 2022) Küresel Isınmanın Etkisi Altında Sürdürülebilir Mimari Tasarım. Doğal Afetler ve Çevre Dergisi 8 2 317–328.
IEEE N. Zengin ve R. Yamaçlı, “Küresel Isınmanın Etkisi Altında Sürdürülebilir Mimari Tasarım”, Doğ Afet Çev Derg, c. 8, sy. 2, ss. 317–328, 2022, doi: 10.21324/dacd.1045444.
ISNAD Zengin, Nihal - Yamaçlı, Ruşen. “Küresel Isınmanın Etkisi Altında Sürdürülebilir Mimari Tasarım”. Doğal Afetler ve Çevre Dergisi 8/2 (Temmuz 2022), 317-328. https://doi.org/10.21324/dacd.1045444.
JAMA Zengin N, Yamaçlı R. Küresel Isınmanın Etkisi Altında Sürdürülebilir Mimari Tasarım. Doğ Afet Çev Derg. 2022;8:317–328.
MLA Zengin, Nihal ve Ruşen Yamaçlı. “Küresel Isınmanın Etkisi Altında Sürdürülebilir Mimari Tasarım”. Doğal Afetler Ve Çevre Dergisi, c. 8, sy. 2, 2022, ss. 317-28, doi:10.21324/dacd.1045444.
Vancouver Zengin N, Yamaçlı R. Küresel Isınmanın Etkisi Altında Sürdürülebilir Mimari Tasarım. Doğ Afet Çev Derg. 2022;8(2):317-28.

Creative Commons License
Doğal Afetler ve Çevre Dergisi, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License ile lisanlanmıştır.