Araştırma Makalesi
PDF Zotero Mendeley EndNote BibTex Kaynak Göster

Farklı Malzemeler ve Geosentetiklerin Yol Dolgusu Güvenliğine ve Davranışına Etkileri

Yıl 2020, Cilt 6, Sayı 2, 334 - 344, 01.07.2020
https://doi.org/10.21324/dacd.613950

Öz

Bu çalışmada, doğal ve atık malzemelerin geri kazanımından elde edilen yeni malzemeler ile oluşturulmuş yol dolgusu modelleri sonlu elemanlar yöntemi kullanılarak analiz edilmiştir. Kumlu silt, kaya agregası, beton, cam gibi farklı malzemelerin yol dolgusuna etkileri incelenmiş ve atık liflerin yol dolgusunda kullanıldığı modellerin analiz sonuçları doğal koşullar ile karşılaştırılmıştır. Ayrıca farklı geosentetik donatı sayıları ile güçlendirilmeye çalışılan yol dolgusu modelleri için de hesaplamalar yapılmıştır. Böylece oluşturulan yol modelinin güvenlik sayısına farklı malzemelerin, liflerin ve geosentetik sayısının etkileri incelenmiştir. Yolun ani göçmesine karşı değerlendirmeler yapılarak, dolgu altındaki yeraltı suyundan kaynaklanacak konsolidasyon davranışının da etkileri farklı malzeme koşulları için karşılaştırılmıştır. Ayrıca, farklı malzemeler kullanılarak inşa edilen dolgularda yolun farklı bölgelerinde trafik yükünden oluşabilecek oturma farkları da değerlendirilmiş ve geosentetiğin etkileri de belirlenmeye çalışılmıştır. Sonuçlar incelendiğinde hem çevreci hem de daha verimli çözümler için değerlendirmeler yapılmıştır. Atık malzemelerin geri dönüşümü ile elde edilen malzemelerin, yol dolgularının stabilite ve güvenlikleri için önemli katkılar sağlayabileceği gözlenmiştir.

Kaynakça

  • Ahirwara S.K., Mandala J.N., (2017), Finite element analysis of flexible pavement with geogrids, Procedia Engineering, 189, 411-416.
  • Ali M.M.Y., (2012), Geotechnical characteristics of recycled glass in road pavement applications, Doktora Tezi, Swinburne University of Technology, Melbourne, Avustralya.
  • Arulrajah A., Piratheepan J., Disfani M.M., Bo M.W., (2013), Geotechnical and geoenvironmental properties of recycled construction and demolition materials in pavement subbase applications, Journal of Materials of Civil Engineering, 28, 1077–88.
  • Brinkgreve R.B.J., Broere W., Waterman D., (2018), Plaxis 2D tutorial, Netherlands. https://www.researchgate.net/publication/ 262012153_Plaxis_2D_-_Version_8, [Erişim 15 Haziran 2019].
  • Çiçek E., Güler E., Yetimoğlu T., (2015), Sedde şevlerinin geosentetik ile donatılandırılmasının stabiliteye etkileri, EÜFBED - Fen Bilimleri Enstitüsü Dergisi, 8(1), 100-114.
  • Djellali A., Houam A., Saghafi B., Hamdane A., Benghazi Z., (2017), Static analysis of flexible pavements over expansive soils, International Journal of Civil Engineering, 15, 391–400.
  • Evangelista L., Brito J., (2007), Mechanical behaviour of concrete made with fine recycled concrete aggregates, Cement and Concrete Composites, 29 (5), 397-401.
  • Herrador R., Perez P., Garach L., Ordonez J., (2012), Use of recycled construction and demolition waste aggregate for road course surfacing, Journal of Transportation Engineering, 138(2), 182-190.
  • Jamsawang P., Yoobanpot N., Thanasisathit N., Voottipruex P., Jongpradist P., (2016), Three-dimensional numerical analysis of a DCM column-supported highway embankment, Computers and Geotechnics, 72, 42–56.
  • Liu H., Won M.S., (2009)., Long-Term Reinforcement Load of Geosynthetic-Reinforced Soil Retaining Walls, Journal of Geotechnical and Geoenvironmental Engineering, 135(7), 875-889.
  • Molenaar A.A.A., van Niekerk A.A., (2002), Effects of gradation, composition, and degree of compaction on the mechanical characteristics of recycled unbound materials, Journal of the Transportation Research Board, 1787(1), 73–82.
  • Oikonomou N.D., (2005), Recycled concrete aggregates, Cement and Concrete Composites, 27(2), 315-318.
  • Park T., Tan S.A., (2005), Enhanced performance of reinforced soil walls by the inclusion of short fiber, Geotextiles and Geomembranes, 23, 348–361.
  • Poon C.S., Chan D., (2006), Feasible use of recycled concrete aggregates and crushed clay brick as unbound road sub-base, Construction and Building Materials, 20(8), 578-585.
  • Rahman M.A., Arulrajah A., Piratheepan J., Bo M.W., Imteaz M.A., (2013), Resilient modulus and permanent deformation responses of geogrid-reinforced construction and demolition materials, Journal of Materials of Civil Engineering, doi: 10.1061/(ASCE)MT.1943-5533.0000824.
  • Ramos-García J.A., Castro M., (2017), Linear visco-elastic behavior of asphalt pavements: 3D-FE response models, Construction and Building Materials, 136, 414–425.
  • Saevarsdottir T., Erlingsson S., (2015), Modelling of responses and rutting profile of a flexible pavement structure in a heavy vehicle simulator test, Road Materials and Pavement Design, 16(1), 1–18.
  • Yu Y., Jianhui Z., Xu Z., Xiaodong P., Hongwei L., Hao C., (2017), Finite element analysis of embankment with soft foundation reinforced by geogrids, Modern Civil and Structural Engineering, 1(1), 78-83.
  • Zhang J., Zhu C., Li X., Pei J., Chen J., (2017), Characterizing the three-stage rutting behavior of asphalt pavement with semi-rigid base by using UMAT in ABAQUS, Construction and Building Materials, 140, 496–507.

The Effects of Different Materials and Geosynthetics on Embankment Safety and Behavior

Yıl 2020, Cilt 6, Sayı 2, 334 - 344, 01.07.2020
https://doi.org/10.21324/dacd.613950

Öz

In this study, road embankment models constructed with new materials obtained from the recycling of natural and waste materials were analysed using the finite element method. The effects of different materials such as sandy silt, rock aggregate, concrete, glass on the road fill were investigated and the results of the analysis of the models using waste fibers in the road fill were compared with the natural conditions. In addition, calculations have been made for road embankment models which are tried to be reinforced with different numbers of geosynthetic reinforcement. Thus, the effects of different materials, fibers and geosynthetics on the number of safety of the road model created were examined. Evaluations were made against the collapse of the road and the effects of the consolidation behaviour arising from groundwater under filling were compared for different material conditions. In addition, the residence differences that may be caused by traffic load in different parts of the road in the fillings constructed using different materials were evaluated and the effects of geosynthetics were tried to be determined. When the results were examined, evaluations were made for both environmental and more efficient solutions. It has been observed that the materials obtained by recycling of waste materials can make significant contributions to the stability and safety of road embankments.

Kaynakça

  • Ahirwara S.K., Mandala J.N., (2017), Finite element analysis of flexible pavement with geogrids, Procedia Engineering, 189, 411-416.
  • Ali M.M.Y., (2012), Geotechnical characteristics of recycled glass in road pavement applications, Doktora Tezi, Swinburne University of Technology, Melbourne, Avustralya.
  • Arulrajah A., Piratheepan J., Disfani M.M., Bo M.W., (2013), Geotechnical and geoenvironmental properties of recycled construction and demolition materials in pavement subbase applications, Journal of Materials of Civil Engineering, 28, 1077–88.
  • Brinkgreve R.B.J., Broere W., Waterman D., (2018), Plaxis 2D tutorial, Netherlands. https://www.researchgate.net/publication/ 262012153_Plaxis_2D_-_Version_8, [Erişim 15 Haziran 2019].
  • Çiçek E., Güler E., Yetimoğlu T., (2015), Sedde şevlerinin geosentetik ile donatılandırılmasının stabiliteye etkileri, EÜFBED - Fen Bilimleri Enstitüsü Dergisi, 8(1), 100-114.
  • Djellali A., Houam A., Saghafi B., Hamdane A., Benghazi Z., (2017), Static analysis of flexible pavements over expansive soils, International Journal of Civil Engineering, 15, 391–400.
  • Evangelista L., Brito J., (2007), Mechanical behaviour of concrete made with fine recycled concrete aggregates, Cement and Concrete Composites, 29 (5), 397-401.
  • Herrador R., Perez P., Garach L., Ordonez J., (2012), Use of recycled construction and demolition waste aggregate for road course surfacing, Journal of Transportation Engineering, 138(2), 182-190.
  • Jamsawang P., Yoobanpot N., Thanasisathit N., Voottipruex P., Jongpradist P., (2016), Three-dimensional numerical analysis of a DCM column-supported highway embankment, Computers and Geotechnics, 72, 42–56.
  • Liu H., Won M.S., (2009)., Long-Term Reinforcement Load of Geosynthetic-Reinforced Soil Retaining Walls, Journal of Geotechnical and Geoenvironmental Engineering, 135(7), 875-889.
  • Molenaar A.A.A., van Niekerk A.A., (2002), Effects of gradation, composition, and degree of compaction on the mechanical characteristics of recycled unbound materials, Journal of the Transportation Research Board, 1787(1), 73–82.
  • Oikonomou N.D., (2005), Recycled concrete aggregates, Cement and Concrete Composites, 27(2), 315-318.
  • Park T., Tan S.A., (2005), Enhanced performance of reinforced soil walls by the inclusion of short fiber, Geotextiles and Geomembranes, 23, 348–361.
  • Poon C.S., Chan D., (2006), Feasible use of recycled concrete aggregates and crushed clay brick as unbound road sub-base, Construction and Building Materials, 20(8), 578-585.
  • Rahman M.A., Arulrajah A., Piratheepan J., Bo M.W., Imteaz M.A., (2013), Resilient modulus and permanent deformation responses of geogrid-reinforced construction and demolition materials, Journal of Materials of Civil Engineering, doi: 10.1061/(ASCE)MT.1943-5533.0000824.
  • Ramos-García J.A., Castro M., (2017), Linear visco-elastic behavior of asphalt pavements: 3D-FE response models, Construction and Building Materials, 136, 414–425.
  • Saevarsdottir T., Erlingsson S., (2015), Modelling of responses and rutting profile of a flexible pavement structure in a heavy vehicle simulator test, Road Materials and Pavement Design, 16(1), 1–18.
  • Yu Y., Jianhui Z., Xu Z., Xiaodong P., Hongwei L., Hao C., (2017), Finite element analysis of embankment with soft foundation reinforced by geogrids, Modern Civil and Structural Engineering, 1(1), 78-83.
  • Zhang J., Zhu C., Li X., Pei J., Chen J., (2017), Characterizing the three-stage rutting behavior of asphalt pavement with semi-rigid base by using UMAT in ABAQUS, Construction and Building Materials, 140, 496–507.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Yayınlanma Tarihi 2020
Bölüm Araştırma Makalesi
Yazarlar

Elif ÇİÇEK (Sorumlu Yazar)
HACETTEPE ÜNİVERSİTESİ
0000-0002-3575-8079
Türkiye

Yayımlanma Tarihi 1 Temmuz 2020
Yayınlandığı Sayı Yıl 2020, Cilt 6, Sayı 2

Kaynak Göster

Bibtex @araştırma makalesi { dacd613950, journal = {Doğal Afetler ve Çevre Dergisi}, issn = {}, eissn = {2528-9640}, address = {}, publisher = {Artvin Çoruh Üniversitesi}, year = {2020}, volume = {6}, pages = {334 - 344}, doi = {10.21324/dacd.613950}, title = {Farklı Malzemeler ve Geosentetiklerin Yol Dolgusu Güvenliğine ve Davranışına Etkileri}, key = {cite}, author = {Çiçek, Elif} }
APA Çiçek, E. (2020). Farklı Malzemeler ve Geosentetiklerin Yol Dolgusu Güvenliğine ve Davranışına Etkileri . Doğal Afetler ve Çevre Dergisi , 6 (2) , 334-344 . DOI: 10.21324/dacd.613950
MLA Çiçek, E. "Farklı Malzemeler ve Geosentetiklerin Yol Dolgusu Güvenliğine ve Davranışına Etkileri" . Doğal Afetler ve Çevre Dergisi 6 (2020 ): 334-344 <http://dacd.artvin.edu.tr/tr/pub/issue/55075/613950>
Chicago Çiçek, E. "Farklı Malzemeler ve Geosentetiklerin Yol Dolgusu Güvenliğine ve Davranışına Etkileri". Doğal Afetler ve Çevre Dergisi 6 (2020 ): 334-344
RIS TY - JOUR T1 - Farklı Malzemeler ve Geosentetiklerin Yol Dolgusu Güvenliğine ve Davranışına Etkileri AU - Elif Çiçek Y1 - 2020 PY - 2020 N1 - doi: 10.21324/dacd.613950 DO - 10.21324/dacd.613950 T2 - Doğal Afetler ve Çevre Dergisi JF - Journal JO - JOR SP - 334 EP - 344 VL - 6 IS - 2 SN - -2528-9640 M3 - doi: 10.21324/dacd.613950 UR - https://doi.org/10.21324/dacd.613950 Y2 - 2020 ER -
EndNote %0 Doğal Afetler ve Çevre Dergisi Farklı Malzemeler ve Geosentetiklerin Yol Dolgusu Güvenliğine ve Davranışına Etkileri %A Elif Çiçek %T Farklı Malzemeler ve Geosentetiklerin Yol Dolgusu Güvenliğine ve Davranışına Etkileri %D 2020 %J Doğal Afetler ve Çevre Dergisi %P -2528-9640 %V 6 %N 2 %R doi: 10.21324/dacd.613950 %U 10.21324/dacd.613950
ISNAD Çiçek, Elif . "Farklı Malzemeler ve Geosentetiklerin Yol Dolgusu Güvenliğine ve Davranışına Etkileri". Doğal Afetler ve Çevre Dergisi 6 / 2 (Temmuz 2020): 334-344 . https://doi.org/10.21324/dacd.613950
AMA Çiçek E. Farklı Malzemeler ve Geosentetiklerin Yol Dolgusu Güvenliğine ve Davranışına Etkileri. DACD. 2020; 6(2): 334-344.
Vancouver Çiçek E. Farklı Malzemeler ve Geosentetiklerin Yol Dolgusu Güvenliğine ve Davranışına Etkileri. Doğal Afetler ve Çevre Dergisi. 2020; 6(2): 334-344.
IEEE E. Çiçek , "Farklı Malzemeler ve Geosentetiklerin Yol Dolgusu Güvenliğine ve Davranışına Etkileri", Doğal Afetler ve Çevre Dergisi, c. 6, sayı. 2, ss. 334-344, Tem. 2020, doi:10.21324/dacd.613950

Creative Commons License
Doğal Afetler ve Çevre Dergisi, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License ile lisanlanmıştır.