Araştırma Makalesi
PDF Zotero Mendeley EndNote BibTex Kaynak Göster

Assessment of Isparta Basin by Using 1D Nonlinear Site Response Analysis Approach; 1914 Burdur (Ms: 7.0) Earthquake Scenario

Yıl 2021, Cilt 7, Sayı 2, 226 - 239, 25.07.2021
https://doi.org/10.21324/dacd.793810

Öz

It was known that building damage caused by earthquakes depends not only on the physical characteristics of the earthquake but also on the characteristics of the soil. This fact has determined soil response before strong ground motion is one of the main objectives of earthquake engineering and seismology. In this study, the main objective is to predict the soil response of the Isparta basin, Isparta, located in the center of one of Turkey's most important tectonic elements. It uses shear wave velocity (Vs) and borehole data at 24 points. The soil of the study area was classified as ZC and ZD soil groups according to the Turkish Building Earthquake Code-2018 (TBEC-2018) soil classification criteria, and its 1D Nonlinear site response analysis approach was carried out using the DEEPSOIL program in the study area. In the analysis, 6.9 Mw Irpinia strong ground motion record was used and the largest peak ground acceleration (Pga) and spectral acceleration (Sa) maps of the study area were created. Pga values in the study area were determined in the range of 0.28-0.41 g and Sa values in the range of 0.77-1.82 g. In addition, the coherence between 2D sections and Pga and Vs30 was examined. The obtained results were showed that the soil would significantly increase the effects of strong ground motion in the Çünür region where the city center and new settlement areas are dense.

Kaynakça

  • Akbulut A., (1980), Eğirdir Gölü güneyinde Çandır (Sütçüler-Isparta) yöresindeki Batı Torosların jeolojisi, Geological Bulletin of Turkey, 23(1), 1-9.
  • Akın M.K., Kramer, S.L., Topal, T., (2016), Dynamic soil characterization and site response estimation for Erbaa, Tokat (Turkey, Natural Hazards, 82(3), 1833-1868.
  • Ansa A., Biro Y., Erken A., Gülerce Ü., (2004), Seismic microzonation: a case study. In Recent advances in earthquake geotechnical engineering and microzonation, 253-266ss, Springer, Dordrecht.
  • Ansal A.M., İyisan R., Güllü H., (2001), Microtremor measurements for the microzonation of Dinar, Pure and Applied Geophysics, 158, 2525-2541.
  • Arslan H., Siyahi B., (2006), A comparative study on linear and nonlinear site response analysis, Environmental geology, 50(8), 1193-1200.
  • Assimaki D., Kausel E., Whittle A., (2000), Model for dynamic shear modulus and damping for granular soils, Journal of Geotechnical and Geoenvironmental Engineering, 126(10), 859-869.
  • Bajaj K., Anbazhagan P., (2019), Identification of shear modulus reduction and damping curve for deep and shallow sites: kik-net data, Journal of Earthquake Engineering, 1-29.
  • Basu D., Dey A., (2016), Comparative 1D ground response analysis of homogeneous sandy stratum using Linear, Equivalent Linear and Nonlinear Masing approaches, Geotechnics for Infrastructure Development. West Bengal, India: Indian Geotechnical Society, 1-7.
  • Basu D., Boga M., Dey A., (2019), A time-domain nonlinear effective-stress non-Masing approach of ground response analysis of Guwahati city, India, Earthquake Engineering and Engineering Vibration, 18(1), 61-75.
  • Blumenthal M.M., (1963), Le systeme structural du Taurus sud Anatolies, Bull Soc Geol Fr In: Livre a Memoire de Professor P. Fallot. Mem Soc Geol Fr, 1(2), 611-662.
  • Borcherdt R.D., (1994), Estimates of site-dependent response spectra for design (methodology and justification), Earthquake spectra, 10, 617-617.
  • Bolisetti C., Whittaker A.S., Mason H.B., Almufti I., Willford M., (2014), Equivalent linear and nonlinear site response analysis for design and risk assessment of safety-related nuclear structures, Nuclear Engineering and Design, 275, 107-121.
  • Coburn A.W., Spence R.J., (2002), Earthquake protection, John Wiley and Sons, Chichester, England, 436ss.
  • Darendeli M.B. (2001), Development of a new family of normalized modulus reduction and material damping curves, Ph.D., Civil Engineering, University of Texas at Austin, 362ss.
  • Finn W.D.L., (1995), Ventura CE Challenging issues in local microzonation. In: 5th International Conference on Seismic Zonation, Nice, France.
  • Foerster E., Modaressi H., (2007), Nonlinear numerical method for earthquake site response analysis II—case studies, Bulletin of Earthquake Engineering, 5(3), 325-345.
  • Gautam D., Forte G., Rodrigues H., (2016), Site effects and associated structural damage analysis in Kathmandu Valley, Nepal, Earthquakes and Structures, 10(5), 1013-1032.
  • Goto H., Sawada S., Morikawa H., Kiku H., Özalaybey S., (2005), Modeling of 3D subsurface structure and numerical simulation of strong ground motion in the Adapazari basin during the 1999 Kocaeli earthquake, Turkey, Bulletin of the Seismological Society of America, 95(6), 2197-2215.
  • Görmüş M., Özkul M., (1995), Gönen-Atabey (Isparta) ve Ağlasun (Burdur) Arasındaki Bölgenin Stratigrafisi, Süleyman Demirel University Journal of Natural and Applied Sciences, 1, 43-64.
  • Görmüş M., Çoban H., Caran Ş., Uysal K., Bircan C., Tunç İ.O., (2005), Eğirdir Gölü Batısı Pliyo-Kuvaterner Sedimanları, Türkiye Kuvaterner Sempozyumu, İstanbul, 205-218.
  • Hardin B.O., Drnevich V.P., (1972), Shear modulus and damping in soils: design equations and curves, Journal of the Soil mechanics and Foundations Division, 98(7), 667-692.
  • Hasal M.E., İyisan R., (2014), A numerical study on comparison of 1D and 2D seismic responses of a basin in Turkey, American Journal of Civil Engineering, 2(5), 123-133.
  • Hashash Y.M., Park D., (2001), Non-linear one-dimensional seismic ground motion propagation in the Mississippi embayment, Engineering Geology, 62(1-3), 185-206.
  • Hashash Y.M., Phillips C., Groholski D.R., (2010), Recent advances in non-linear site response analysis, In: Proceedings of the fifth international conference on recent advances in geotechnical earthquake engineering and soil Dynamics, San Diego, California, 1-22.
  • Hashash Y.M., Dashti S., Romero M.I., Ghayoomi M., Musgrove M., (2015), Evaluation of 1-D seismic site response modeling of sand using centrifuge experiments, Soil Dynamics and Earthquake Engineering, 78, 19-31.
  • Hashash Y.M.A., Musgrove M.I., Harmon J.A., Ilhan O., Groholski D.R., Phillips C.A., Park D., (2017), DEEPSOIL 7.0, User Manual.
  • Hosseini S.M.M.M., Pajouh M.A., (2012), Comparative study on the equivalent linear and the fully nonlinear site response analysis approaches. Arabian Journal of Geosciences, 5(4), 587-597.
  • Işık N.S., (2010), Assessment of the site amplifications and predominant site periods for Saruhanlı, in an earthquake-prone region of Turkey, Bulletin of engineering geology and the environment, 69(2), 309-319.
  • Kaklamanos J., Baise L.G., Thompson E.M., Dorfmann L., (2015), Comparison of 1D linear, equivalent-linear, and nonlinear site response models at six KiK-net validation sites, Soil Dynamics and Earthquake Engineering, 69, 207-219.
  • Kanlı A.İ., Tildy P., Prónay Z., Pınar A., Hermann L., (2006), Vs30 mapping and soil classification for seismic site effect evaluation in Dinar region, SW Turkey, Geophysical Journal International, 165(1), 223-235.
  • Karaman M.E., Meriç E., Tansel İ., (1988), Çünür (Isparta) dolaylarında Kretase-Tersiyer geçişi, Akdeniz Üniversitesi Isparta Mühendislik Fakültesi Dergisi, 4, 80-100.
  • Kazancı N., Karaman M.E., (1988), Gölcük (Isparta) Pliyosen volkanoklastiklerinin sedimenter özellikleri ve depolanma mekanızmaları, Akdeniz Üniversitesi Isparta Mühendislik Fakültesi Dergisi, 4, 16-35.
  • Kazancı N., (1990), Fan-delta sequences in the Pleistocene and Holocene Burdur Basin, Turkey: the role of basin-margin configuration in sediment entrapment and differential facies development, Coarse grained deltas, 185-198.
  • Khanbabazadeh H., İyisan R., Ansal A., Hasal M.E., (2016), 2D non-linear seismic response of the Dinar basin, TURKEY, Soil Dynamics and Earthquake Engineering, 89, 5-11.
  • Koçyiğit A., Özacar A.A., (2003), Extensional neotectonic regime through the NE edge of the Outer Isparta Angle, SW Turkey: new field and seismic data, Turkish Journal of Earth Sciences, 12(1), 67-90.
  • Kramer S.L., (1996), Geotechnical earthquake engineering, In prentice-Hall international series in civil engineering and engineering mechanics, Prentice-Hall, New Jersey, 273ss.
  • Kumar S.S., Krishna A.M., Dey A., (2014), Nonlinear site-specific ground response analysis: case study of Amingaon, Guwahati, In: 15th symposium on earthquake engineering, IIT Roorke, 308-318.
  • Kwok A.O., Stewart J.P., Hashash Y.M., Matasovic N., Pyke R., Wang Z., Yang Z., (2007), Use of exact solutions of wave propagation problems to guide implementation of nonlinear seismic ground response analysis procedures, Journal of Geotechnical and Geoenvironmental Engineering, 133(11), 1385-1398.
  • Lee C.P., Tsai Y.B., Wen K.L., (2006), Analysis of nonlinear site response using the LSST downhole accelerometer array data, Soil Dynamics and Earthquake Engineering, 26(5), 435-460.
  • Louie J.N., (2001), Faster, better: shear-wave velocity to 100 meters depth from refraction microtremor arrays, Bulletin of the Seismological Society of America, 91(2), 347-364.
  • Louie J.N., Pancha A., Pullammanappallil S., (2017), Applications of Refraction Microtremor Done Right, and Pitfalls of Microtremor Arrays Done Wrong, 16th World Conference on Earthquake Engineering, Santiago Chile, Paper No: 4947.
  • Matasovic N., (1993), Seismic response of composite horizontally-layered soil deposits, Ph.D. Thesis, Department of civil engineering, University of California at Los Ang.
  • Menq F.Y., (2003), Dynamic properties of sandy and gravelly soils, Ph.D. thesis, Department of Civil Engineering, University of Texas, Austin.
  • Özel O., Sasatani T., (2004), A site effect study of the Adapazari basin, Turkey, from strong and weak-motion data, J Seismol 8(4), 559-572.
  • Park D., Hashash Y.M., (2008), Rate-dependent soil behavior in seismic site response analysis, Canadian Geotechnical Journal, 45(4), 454-469.
  • Phillips C., Hashash Y.M., (2009), Damping formulation for nonlinear 1D site response analyses, Soil Dynam Earthq Eng, 29(7), 1143-58.
  • Poisson A., Yağmurlu F., Bozcu M., Şentürk M., (2003), New insights on the tectonic setting and evolution around the apex of the Isparta Angle (SW Turkey), Geological Journal, 38(3-4), 257-282.
  • Rayhani M.H.T., El Naggar M.H., Tabatabaei S.H., (2008), Nonlinear analysis of local site effects on seismic ground response in the Bam earthquak, Geotechnical and Geological Engineering, 26(1), 91-100.
  • Régnier J., Bonilla L.F., Bard P.Y., Bertrand E. et al., (2016), International benchmark on numerical simulations for 1D, nonlinear site response (PRENOLIN): Verification phase based on canonical cases, Bulletin of the Seismological Society of America, 106(5), 2112-2135.
  • Régnier J., Bonilla L.F., Bard P.Y., Bertrand E. et al., (2018), PRENOLIN: International Benchmark on 1D Nonlinear Site‐Response Analysis-Validation Phase ExercisePRENOLIN: International Benchmark on 1D Nonlinear Site‐Response Analysis-Validation Phase Exercise, Bulletin of the Seismological Society of America, 108(2), 876-900.
  • Robertson P.K., Woeller D.J. Finn W.D.L., (1992), Seismic cone penetration test for evaluating liquefaction potential under cyclic loading, Canadian Geotechnical Journal, 29(4), 686-695.
  • Sana H., Nath S.K., Gujral K.S., (2019), Site response analysis of the Kashmir valley during the 8 October 2005 Kashmir earthquake (Mw 7.6) using a geotechnical dataset, Bulletin of Engineering Geology and the Environment, 78(4), 2551-2563.
  • Seed H.B., Idriss I.M., (1970), Analyses of ground motions at Union Bay, Seattle during earthquakes and distant nuclear blasts, Bulletin of the Seismological Society of America, 60(1), 125-136.
  • Selçuk L., Aydın H., (2012), Kuvaterner yaşlı alüvyal zeminlerin kuvvetli yer hareketine etkisi: 2011 Van depremleri, Jeoloji Mühendisliği Dergisi, 36(2), 75-98.
  • Silahtar A., (2018), Isparta havza yapısının jeofizik yöntemler ile modellenmesi ve senaryo deprem sismik tehlike haritalarının hazırlanması, Doktora Tezi, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, 271ss.
  • Sönmezer Y.B., Akbaş S.O., Işık N.S., (2015), Kırıkkale İli Yerleşim Alanı İçin En Büyük İvme, Zemin Büyütmesi ve Hakim Titreşim Periyodu Özelliklerinin Değerlendirilmesi, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 30(4), 711-721.
  • Sönmezer Y.B., Çeliker M., Baş S., (2019), An investigation on the evaluation of dynamic soil characteristics of the Elazig City through the 1-D equivalent linear site-response analysis, Bulletin of Engineering Geology and the Environment, 78(7), 4689-4712.
  • Sönmezer Y.B., Çeliker M., (2020), Determination of seismic hazard and soil response of a critical region in Turkey considering far-field and near-field earthquake effect, Geomechanics and Engineering, 20(2), 131-146.
  • Stokoe K.H, Choi W.K., Jeon S.Y., Lee, J.J., (2006), Intact Dacite, Tuff and Soil Specimens, Chemistry and Metallurgical Research Replacement (CMRR) Project, Los Alamos National Laboratory, Los Alamos, New Mexico, Geotechnical Engineering Report GR06-1, Civil, Architectural and Environmental Engineering Department, the University of Texas at Austin, Austin, TX,.
  • Şafak E., (2001), Local site effects and dynamic soil behavior, Soil Dynamics and Earthquake Engineering, 21(5), 453-458.
  • Vucetic M., Dobry R., (1991), Effect of soil plasticity on cyclic response, Journal of geotechnical engineering, 117(1), 89-107.
  • Yoshida N., (1994), Applicability of conventional computer code SHAKE to nonlinear problem, In: Proceedings of symposium on amplification of ground shaking in soft ground, Tokyo, Japan, 14-31.
  • Yoshida N., Iai S., (1998), Nonlinear site response analysis and its evaluation and prediction, In: 2nd international symposium on the effect of surface geology on seismic motion, Yokosuka, Japan, 71-90.

Isparta Havzasının 1D Doğrusal Olmayan Zemin Tepki Analizi Yöntemi ile Değerlendirilmesi; 1914 Burdur (Ms: 7.0) Deprem Senaryosu

Yıl 2021, Cilt 7, Sayı 2, 226 - 239, 25.07.2021
https://doi.org/10.21324/dacd.793810

Öz

Depremlerin meydana getirdiği yapı hasarlarının sadece depremin fiziksel özelliklerinden değil aynı zamanda zeminin özelliklerine de bağlı olduğu bilinmektedir. Bu durum zemin tepkisinin kuvvetli yer hareketi öncesi belirlenmesini deprem mühendisliği ve sismolojinin ana hedeflerinden birisi haline getirmiştir. Bu çalışmada, belirlenen 24 noktada kayma dalgası (Vs) ve sondaj verileri kullanılarak Türkiye’nin en önemli tektonik elemanlarından birinin merkezinde yer alan Isparta ovasının zemin tepkisinin öngörülmesi hedeflenmiştir. Türkiye Bina Deprem Yönetmeliği (TBDY-2018) zemin sınıflama kriterlerine göre ZC ve ZD zemin grupları karakterize edilen çalışma alanında 1 boyutlu doğrusal olmayan zemin tepki analizi yaklaşımı DEEPSOIL programı kullanılarak gerçekleştirilmiştir. Mw:6.9 İrpinia kuvvetli yer hareketi kaydı kullanılarak yapılan çözümlemede çalışma alanının en büyük yer ivmesi (Pga) ve spektral ivme (Sa) dağılım haritası oluşturulmuştur. Çalışma alanında yüzeydeki Pga değerleri 0.28-0.41 g aralığında, maksimum Sa değerleri ise 0.77-1.82 g aralığında dağılım gösterdiği tespit edilmiştir. Ayrıca havza içerisinde birbirine dik iki kesit üzerinde Pga ve Vs30 arasındaki uyum irdelenmiştir. Elde edilen sonuçlar şehir merkezi ve yeni yapılaşma alanlarının yoğun olduğu Çünür bölgesinde zeminin kuvvetli yer hareketinin etkilerini önemli bir şekilde arttıracağını göstermiştir.

Kaynakça

  • Akbulut A., (1980), Eğirdir Gölü güneyinde Çandır (Sütçüler-Isparta) yöresindeki Batı Torosların jeolojisi, Geological Bulletin of Turkey, 23(1), 1-9.
  • Akın M.K., Kramer, S.L., Topal, T., (2016), Dynamic soil characterization and site response estimation for Erbaa, Tokat (Turkey, Natural Hazards, 82(3), 1833-1868.
  • Ansa A., Biro Y., Erken A., Gülerce Ü., (2004), Seismic microzonation: a case study. In Recent advances in earthquake geotechnical engineering and microzonation, 253-266ss, Springer, Dordrecht.
  • Ansal A.M., İyisan R., Güllü H., (2001), Microtremor measurements for the microzonation of Dinar, Pure and Applied Geophysics, 158, 2525-2541.
  • Arslan H., Siyahi B., (2006), A comparative study on linear and nonlinear site response analysis, Environmental geology, 50(8), 1193-1200.
  • Assimaki D., Kausel E., Whittle A., (2000), Model for dynamic shear modulus and damping for granular soils, Journal of Geotechnical and Geoenvironmental Engineering, 126(10), 859-869.
  • Bajaj K., Anbazhagan P., (2019), Identification of shear modulus reduction and damping curve for deep and shallow sites: kik-net data, Journal of Earthquake Engineering, 1-29.
  • Basu D., Dey A., (2016), Comparative 1D ground response analysis of homogeneous sandy stratum using Linear, Equivalent Linear and Nonlinear Masing approaches, Geotechnics for Infrastructure Development. West Bengal, India: Indian Geotechnical Society, 1-7.
  • Basu D., Boga M., Dey A., (2019), A time-domain nonlinear effective-stress non-Masing approach of ground response analysis of Guwahati city, India, Earthquake Engineering and Engineering Vibration, 18(1), 61-75.
  • Blumenthal M.M., (1963), Le systeme structural du Taurus sud Anatolies, Bull Soc Geol Fr In: Livre a Memoire de Professor P. Fallot. Mem Soc Geol Fr, 1(2), 611-662.
  • Borcherdt R.D., (1994), Estimates of site-dependent response spectra for design (methodology and justification), Earthquake spectra, 10, 617-617.
  • Bolisetti C., Whittaker A.S., Mason H.B., Almufti I., Willford M., (2014), Equivalent linear and nonlinear site response analysis for design and risk assessment of safety-related nuclear structures, Nuclear Engineering and Design, 275, 107-121.
  • Coburn A.W., Spence R.J., (2002), Earthquake protection, John Wiley and Sons, Chichester, England, 436ss.
  • Darendeli M.B. (2001), Development of a new family of normalized modulus reduction and material damping curves, Ph.D., Civil Engineering, University of Texas at Austin, 362ss.
  • Finn W.D.L., (1995), Ventura CE Challenging issues in local microzonation. In: 5th International Conference on Seismic Zonation, Nice, France.
  • Foerster E., Modaressi H., (2007), Nonlinear numerical method for earthquake site response analysis II—case studies, Bulletin of Earthquake Engineering, 5(3), 325-345.
  • Gautam D., Forte G., Rodrigues H., (2016), Site effects and associated structural damage analysis in Kathmandu Valley, Nepal, Earthquakes and Structures, 10(5), 1013-1032.
  • Goto H., Sawada S., Morikawa H., Kiku H., Özalaybey S., (2005), Modeling of 3D subsurface structure and numerical simulation of strong ground motion in the Adapazari basin during the 1999 Kocaeli earthquake, Turkey, Bulletin of the Seismological Society of America, 95(6), 2197-2215.
  • Görmüş M., Özkul M., (1995), Gönen-Atabey (Isparta) ve Ağlasun (Burdur) Arasındaki Bölgenin Stratigrafisi, Süleyman Demirel University Journal of Natural and Applied Sciences, 1, 43-64.
  • Görmüş M., Çoban H., Caran Ş., Uysal K., Bircan C., Tunç İ.O., (2005), Eğirdir Gölü Batısı Pliyo-Kuvaterner Sedimanları, Türkiye Kuvaterner Sempozyumu, İstanbul, 205-218.
  • Hardin B.O., Drnevich V.P., (1972), Shear modulus and damping in soils: design equations and curves, Journal of the Soil mechanics and Foundations Division, 98(7), 667-692.
  • Hasal M.E., İyisan R., (2014), A numerical study on comparison of 1D and 2D seismic responses of a basin in Turkey, American Journal of Civil Engineering, 2(5), 123-133.
  • Hashash Y.M., Park D., (2001), Non-linear one-dimensional seismic ground motion propagation in the Mississippi embayment, Engineering Geology, 62(1-3), 185-206.
  • Hashash Y.M., Phillips C., Groholski D.R., (2010), Recent advances in non-linear site response analysis, In: Proceedings of the fifth international conference on recent advances in geotechnical earthquake engineering and soil Dynamics, San Diego, California, 1-22.
  • Hashash Y.M., Dashti S., Romero M.I., Ghayoomi M., Musgrove M., (2015), Evaluation of 1-D seismic site response modeling of sand using centrifuge experiments, Soil Dynamics and Earthquake Engineering, 78, 19-31.
  • Hashash Y.M.A., Musgrove M.I., Harmon J.A., Ilhan O., Groholski D.R., Phillips C.A., Park D., (2017), DEEPSOIL 7.0, User Manual.
  • Hosseini S.M.M.M., Pajouh M.A., (2012), Comparative study on the equivalent linear and the fully nonlinear site response analysis approaches. Arabian Journal of Geosciences, 5(4), 587-597.
  • Işık N.S., (2010), Assessment of the site amplifications and predominant site periods for Saruhanlı, in an earthquake-prone region of Turkey, Bulletin of engineering geology and the environment, 69(2), 309-319.
  • Kaklamanos J., Baise L.G., Thompson E.M., Dorfmann L., (2015), Comparison of 1D linear, equivalent-linear, and nonlinear site response models at six KiK-net validation sites, Soil Dynamics and Earthquake Engineering, 69, 207-219.
  • Kanlı A.İ., Tildy P., Prónay Z., Pınar A., Hermann L., (2006), Vs30 mapping and soil classification for seismic site effect evaluation in Dinar region, SW Turkey, Geophysical Journal International, 165(1), 223-235.
  • Karaman M.E., Meriç E., Tansel İ., (1988), Çünür (Isparta) dolaylarında Kretase-Tersiyer geçişi, Akdeniz Üniversitesi Isparta Mühendislik Fakültesi Dergisi, 4, 80-100.
  • Kazancı N., Karaman M.E., (1988), Gölcük (Isparta) Pliyosen volkanoklastiklerinin sedimenter özellikleri ve depolanma mekanızmaları, Akdeniz Üniversitesi Isparta Mühendislik Fakültesi Dergisi, 4, 16-35.
  • Kazancı N., (1990), Fan-delta sequences in the Pleistocene and Holocene Burdur Basin, Turkey: the role of basin-margin configuration in sediment entrapment and differential facies development, Coarse grained deltas, 185-198.
  • Khanbabazadeh H., İyisan R., Ansal A., Hasal M.E., (2016), 2D non-linear seismic response of the Dinar basin, TURKEY, Soil Dynamics and Earthquake Engineering, 89, 5-11.
  • Koçyiğit A., Özacar A.A., (2003), Extensional neotectonic regime through the NE edge of the Outer Isparta Angle, SW Turkey: new field and seismic data, Turkish Journal of Earth Sciences, 12(1), 67-90.
  • Kramer S.L., (1996), Geotechnical earthquake engineering, In prentice-Hall international series in civil engineering and engineering mechanics, Prentice-Hall, New Jersey, 273ss.
  • Kumar S.S., Krishna A.M., Dey A., (2014), Nonlinear site-specific ground response analysis: case study of Amingaon, Guwahati, In: 15th symposium on earthquake engineering, IIT Roorke, 308-318.
  • Kwok A.O., Stewart J.P., Hashash Y.M., Matasovic N., Pyke R., Wang Z., Yang Z., (2007), Use of exact solutions of wave propagation problems to guide implementation of nonlinear seismic ground response analysis procedures, Journal of Geotechnical and Geoenvironmental Engineering, 133(11), 1385-1398.
  • Lee C.P., Tsai Y.B., Wen K.L., (2006), Analysis of nonlinear site response using the LSST downhole accelerometer array data, Soil Dynamics and Earthquake Engineering, 26(5), 435-460.
  • Louie J.N., (2001), Faster, better: shear-wave velocity to 100 meters depth from refraction microtremor arrays, Bulletin of the Seismological Society of America, 91(2), 347-364.
  • Louie J.N., Pancha A., Pullammanappallil S., (2017), Applications of Refraction Microtremor Done Right, and Pitfalls of Microtremor Arrays Done Wrong, 16th World Conference on Earthquake Engineering, Santiago Chile, Paper No: 4947.
  • Matasovic N., (1993), Seismic response of composite horizontally-layered soil deposits, Ph.D. Thesis, Department of civil engineering, University of California at Los Ang.
  • Menq F.Y., (2003), Dynamic properties of sandy and gravelly soils, Ph.D. thesis, Department of Civil Engineering, University of Texas, Austin.
  • Özel O., Sasatani T., (2004), A site effect study of the Adapazari basin, Turkey, from strong and weak-motion data, J Seismol 8(4), 559-572.
  • Park D., Hashash Y.M., (2008), Rate-dependent soil behavior in seismic site response analysis, Canadian Geotechnical Journal, 45(4), 454-469.
  • Phillips C., Hashash Y.M., (2009), Damping formulation for nonlinear 1D site response analyses, Soil Dynam Earthq Eng, 29(7), 1143-58.
  • Poisson A., Yağmurlu F., Bozcu M., Şentürk M., (2003), New insights on the tectonic setting and evolution around the apex of the Isparta Angle (SW Turkey), Geological Journal, 38(3-4), 257-282.
  • Rayhani M.H.T., El Naggar M.H., Tabatabaei S.H., (2008), Nonlinear analysis of local site effects on seismic ground response in the Bam earthquak, Geotechnical and Geological Engineering, 26(1), 91-100.
  • Régnier J., Bonilla L.F., Bard P.Y., Bertrand E. et al., (2016), International benchmark on numerical simulations for 1D, nonlinear site response (PRENOLIN): Verification phase based on canonical cases, Bulletin of the Seismological Society of America, 106(5), 2112-2135.
  • Régnier J., Bonilla L.F., Bard P.Y., Bertrand E. et al., (2018), PRENOLIN: International Benchmark on 1D Nonlinear Site‐Response Analysis-Validation Phase ExercisePRENOLIN: International Benchmark on 1D Nonlinear Site‐Response Analysis-Validation Phase Exercise, Bulletin of the Seismological Society of America, 108(2), 876-900.
  • Robertson P.K., Woeller D.J. Finn W.D.L., (1992), Seismic cone penetration test for evaluating liquefaction potential under cyclic loading, Canadian Geotechnical Journal, 29(4), 686-695.
  • Sana H., Nath S.K., Gujral K.S., (2019), Site response analysis of the Kashmir valley during the 8 October 2005 Kashmir earthquake (Mw 7.6) using a geotechnical dataset, Bulletin of Engineering Geology and the Environment, 78(4), 2551-2563.
  • Seed H.B., Idriss I.M., (1970), Analyses of ground motions at Union Bay, Seattle during earthquakes and distant nuclear blasts, Bulletin of the Seismological Society of America, 60(1), 125-136.
  • Selçuk L., Aydın H., (2012), Kuvaterner yaşlı alüvyal zeminlerin kuvvetli yer hareketine etkisi: 2011 Van depremleri, Jeoloji Mühendisliği Dergisi, 36(2), 75-98.
  • Silahtar A., (2018), Isparta havza yapısının jeofizik yöntemler ile modellenmesi ve senaryo deprem sismik tehlike haritalarının hazırlanması, Doktora Tezi, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, 271ss.
  • Sönmezer Y.B., Akbaş S.O., Işık N.S., (2015), Kırıkkale İli Yerleşim Alanı İçin En Büyük İvme, Zemin Büyütmesi ve Hakim Titreşim Periyodu Özelliklerinin Değerlendirilmesi, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 30(4), 711-721.
  • Sönmezer Y.B., Çeliker M., Baş S., (2019), An investigation on the evaluation of dynamic soil characteristics of the Elazig City through the 1-D equivalent linear site-response analysis, Bulletin of Engineering Geology and the Environment, 78(7), 4689-4712.
  • Sönmezer Y.B., Çeliker M., (2020), Determination of seismic hazard and soil response of a critical region in Turkey considering far-field and near-field earthquake effect, Geomechanics and Engineering, 20(2), 131-146.
  • Stokoe K.H, Choi W.K., Jeon S.Y., Lee, J.J., (2006), Intact Dacite, Tuff and Soil Specimens, Chemistry and Metallurgical Research Replacement (CMRR) Project, Los Alamos National Laboratory, Los Alamos, New Mexico, Geotechnical Engineering Report GR06-1, Civil, Architectural and Environmental Engineering Department, the University of Texas at Austin, Austin, TX,.
  • Şafak E., (2001), Local site effects and dynamic soil behavior, Soil Dynamics and Earthquake Engineering, 21(5), 453-458.
  • Vucetic M., Dobry R., (1991), Effect of soil plasticity on cyclic response, Journal of geotechnical engineering, 117(1), 89-107.
  • Yoshida N., (1994), Applicability of conventional computer code SHAKE to nonlinear problem, In: Proceedings of symposium on amplification of ground shaking in soft ground, Tokyo, Japan, 14-31.
  • Yoshida N., Iai S., (1998), Nonlinear site response analysis and its evaluation and prediction, In: 2nd international symposium on the effect of surface geology on seismic motion, Yokosuka, Japan, 71-90.

Ayrıntılar

Birincil Dil Türkçe
Konular Yerbilimleri, Ortak Disiplinler
Yayınlanma Tarihi Temmuz 2021
Bölüm Araştırma Makalesi
Yazarlar

Ali SİLAHTAR (Sorumlu Yazar)
Sakarya Üniversitesi
0000-0002-7259-4560
Türkiye

Yayımlanma Tarihi 25 Temmuz 2021
Yayınlandığı Sayı Yıl 2021, Cilt 7, Sayı 2

Kaynak Göster

Bibtex @araştırma makalesi { dacd793810, journal = {Doğal Afetler ve Çevre Dergisi}, issn = {}, eissn = {2528-9640}, address = {}, publisher = {Artvin Çoruh Üniversitesi}, year = {2021}, volume = {7}, pages = {226 - 239}, doi = {10.21324/dacd.793810}, title = {Isparta Havzasının 1D Doğrusal Olmayan Zemin Tepki Analizi Yöntemi ile Değerlendirilmesi; 1914 Burdur (Ms: 7.0) Deprem Senaryosu}, key = {cite}, author = {Silahtar, Ali} }
APA Silahtar, A. (2021). Isparta Havzasının 1D Doğrusal Olmayan Zemin Tepki Analizi Yöntemi ile Değerlendirilmesi; 1914 Burdur (Ms: 7.0) Deprem Senaryosu . Doğal Afetler ve Çevre Dergisi , 7 (2) , 226-239 . DOI: 10.21324/dacd.793810
MLA Silahtar, A. "Isparta Havzasının 1D Doğrusal Olmayan Zemin Tepki Analizi Yöntemi ile Değerlendirilmesi; 1914 Burdur (Ms: 7.0) Deprem Senaryosu" . Doğal Afetler ve Çevre Dergisi 7 (2021 ): 226-239 <http://dacd.artvin.edu.tr/tr/pub/issue/64187/793810>
Chicago Silahtar, A. "Isparta Havzasının 1D Doğrusal Olmayan Zemin Tepki Analizi Yöntemi ile Değerlendirilmesi; 1914 Burdur (Ms: 7.0) Deprem Senaryosu". Doğal Afetler ve Çevre Dergisi 7 (2021 ): 226-239
RIS TY - JOUR T1 - Isparta Havzasının 1D Doğrusal Olmayan Zemin Tepki Analizi Yöntemi ile Değerlendirilmesi; 1914 Burdur (Ms: 7.0) Deprem Senaryosu AU - Ali Silahtar Y1 - 2021 PY - 2021 N1 - doi: 10.21324/dacd.793810 DO - 10.21324/dacd.793810 T2 - Doğal Afetler ve Çevre Dergisi JF - Journal JO - JOR SP - 226 EP - 239 VL - 7 IS - 2 SN - -2528-9640 M3 - doi: 10.21324/dacd.793810 UR - https://doi.org/10.21324/dacd.793810 Y2 - 2021 ER -
EndNote %0 Doğal Afetler ve Çevre Dergisi Isparta Havzasının 1D Doğrusal Olmayan Zemin Tepki Analizi Yöntemi ile Değerlendirilmesi; 1914 Burdur (Ms: 7.0) Deprem Senaryosu %A Ali Silahtar %T Isparta Havzasının 1D Doğrusal Olmayan Zemin Tepki Analizi Yöntemi ile Değerlendirilmesi; 1914 Burdur (Ms: 7.0) Deprem Senaryosu %D 2021 %J Doğal Afetler ve Çevre Dergisi %P -2528-9640 %V 7 %N 2 %R doi: 10.21324/dacd.793810 %U 10.21324/dacd.793810
ISNAD Silahtar, Ali . "Isparta Havzasının 1D Doğrusal Olmayan Zemin Tepki Analizi Yöntemi ile Değerlendirilmesi; 1914 Burdur (Ms: 7.0) Deprem Senaryosu". Doğal Afetler ve Çevre Dergisi 7 / 2 (Temmuz 2021): 226-239 . https://doi.org/10.21324/dacd.793810
AMA Silahtar A. Isparta Havzasının 1D Doğrusal Olmayan Zemin Tepki Analizi Yöntemi ile Değerlendirilmesi; 1914 Burdur (Ms: 7.0) Deprem Senaryosu. DACD. 2021; 7(2): 226-239.
Vancouver Silahtar A. Isparta Havzasının 1D Doğrusal Olmayan Zemin Tepki Analizi Yöntemi ile Değerlendirilmesi; 1914 Burdur (Ms: 7.0) Deprem Senaryosu. Doğal Afetler ve Çevre Dergisi. 2021; 7(2): 226-239.
IEEE A. Silahtar , "Isparta Havzasının 1D Doğrusal Olmayan Zemin Tepki Analizi Yöntemi ile Değerlendirilmesi; 1914 Burdur (Ms: 7.0) Deprem Senaryosu", Doğal Afetler ve Çevre Dergisi, c. 7, sayı. 2, ss. 226-239, Tem. 2021, doi:10.21324/dacd.793810

Creative Commons License
Doğal Afetler ve Çevre Dergisi, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License ile lisanlanmıştır.