Araştırma Makalesi
PDF Zotero Mendeley EndNote BibTex Kaynak Göster

Diyarbakır İstasyonunda 1929–2016 Boyunca Tarihsel Kuraklığın Yenilikçi Şen Yöntemi ile Trend Analizi

Yıl 2021, Cilt 7, Sayı 2, 362 - 373, 25.07.2021
https://doi.org/10.21324/dacd.884682

Öz

Bir doğal afet olarak kuraklık; su temini, hidroelektrik üretimi, tarım ve sanayi gibi çeşitli sektörleri etkilemektedir. Su kaynaklarının etkin ve verimli kullanılması açısından, kuraklığın zamansal değişiminin belirlenmesi önem arz etmektedir. Bu çalışmada, Diyarbakır ilindeki meteoroloji gözlem istasyonunda 1929-2016 yılları arasında ölçülmüş aylık toplam yağış verileri kullanılarak kuraklık analizi yapılmıştır. Kuraklık analizinden önce verilerin homojenliği kontrol edilmiştir. Kuraklığın belirlenmesinde, Standartlaştırılmış Yağış İndeksi (SYİ) yöntemi kullanılmış ve 1, 3, 6 ve 12 aylık zaman ölçeklerinde meydana gelen tarihsel kuraklık indis değerleri belirlenmiştir. Farklı zaman ölçeklerine göre hesaplanan kuraklık indis değerlerinin trendini belirlemek için Yenilikçi Şen Yöntemi (Innovative Trend Analysis-ITA) kullanılmıştır. Çalışmada, 1, 3, 6 ve 12 aylık zaman ölçekleri için en kurak periyodlar sırasıyla 8, 18, 21 ve 53 ay olarak belirlenmiştir. 1 aylık zaman ölçeğinde (SYİ-1) kurak dönem meydana gelme oranı %40 iken, diğer zaman ölçeklerinde bu değerin yaklaşık %50 olduğu, ayrıca üç aylık (SYİ-3), altı aylık (SYİ-6) ve 12 aylık (SYİ-12) için orta kurak ve üzeri kuraklık meydana gelme oranının %15-16.5 arasında değiştiği görülmüştür. Yenilikçi Şen Yöntemi ile kuraklık indislerinin trendi incelendiğinde ise, özellikle SYİ-12 için 0.8’den büyük indis değerlerinde zayıf bir azalma eğilimi, orta nemli sınıfa giren indis değerlerinde ise %5 üzerinde bir azalma eğilimi belirlenmiştir. Ayrıca, SYİ-12 değerlerinde -3 ve -3’ten küçük indis değerlerinin güçlü bir artış (%10 ve üzeri) eğilimi gösterdiği, yani aşırı kurak durumun son yıllarda azaldığı tespit edilmiştir.

Kaynakça

  • Alexandersson H., Moberg A., (1997), Homogenization of Swedish Temperature Data. Part I: Homogeneity Test for Linear Trends, International Journal of Climatology, 17, 25-34.
  • Andreadis K.M., Lettenmaier D.P., (2006), Trends in 20th century drought over the continental United States, Geophysical Research Letters, 33, 1-4.
  • Botterill L.C., (2003), Beyond drought: People, Policy and Perspectives, CSIRO Publishing, 248ss.
  • Buishand T.A., (1982), Some methods for testing the homogeneity of rainfall records, Journal of Hydrology, 58, 11-27.
  • Byun H.R., Wilhite D.A., (1999), Objective Quantification of Drought Severity and Duration, Journal of Climate, 12, 2747-2756.
  • Caloiero T., (2018), SPI trend analysis of New Zealand applying the ITA technique, Geosciences, 8(3), 101, doi: 10.3390/geosciences8030101.
  • Cui L., Wang L., Lai Z., Tian Q., Liu W., Li J., (2017), Innovative trend analysis of annual and seasonal air temperature and rainfall in the Yangtze River Basin, China during 1960–2015, Journal of Atmospheric and Solar-Terrestrial Physics, 164, 48-59.
  • Çiçek İ., Duman N., (2015), Seasonal and annual precipitation trends in Turkey, Carpathian Journal of Earth and Environmental Sciences, 10, 77-84.
  • Dashtpagerdi M.M., Kousari M.R., Vagharfard H., Ghonchepour D., Hosseini M.E., Ahani H., (2015), An investigation of drought magnitude trend during 1975–2005 in arid and semi-arid regions of Iran, Environmental earth sciences, 73, 1231-1244.
  • Dikici M., (2020), Drought analysis with different indices for the Asi Basin (Turkey), Scientific Reports, 10, 20739, doi: 10.1038/s41598-020-77827-z.
  • Gumus V., Algin H.M., (2017), Meteorological and hydrological drought analysis of the Seyhan−Ceyhan River Basins, Turkey, Meteorological Applications, 24, 62-73.
  • Gumus V., (2019), Spatio‐temporal precipitation and temperature trend analysis of the Seyhan–Ceyhan River Basins, Turkey, Meteorological Applications, 26, 369-384.
  • Hadi S.J., Tombul M., (2018), Long-term spatiotemporal trend analysis of precipitation and temperature over Turkey, Meteorological Applications, 25, 445-455.
  • Heim R.R., (2002), A Review of Twentieth-Century Drought Indices Used in the United States, Bulletin of the American Meteorological Society, 83, 1149-1166.
  • Jamro S., Channa F.N., Dars G.H., Ansari K., Krakauer N.Y., (2020), Exploring the Evolution of Drought Characteristics in Balochistan, Pakistan, Applied Sciences, 10(3), 913, doi: 10.3390/app10030913.
  • Kendall M.G., (1948), Rank correlation methods. Griffin, London, England.
  • Keskin M.E., Terzi O., Taylan D., Kucukyaman D., (2011), Meteorological drought analysis using artificial neural networks, Scientific Research and Essays, 6, 4469-4477.
  • Liu C., Yang C., Yang Q., Wang J., (2021), Spatiotemporal drought analysis by the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in Sichuan Province, China, Scientific Reports, 11, 1280, doi: 10.1038/s41598-020-80527-3.
  • Liu D., You J., Xie Q., Huang Y., Tong H., (2018), Spatial and Temporal Characteristics of Drought and Flood in Quanzhou Based on Standardized Precipitation Index (SPI) in Recent 55 Years, Journal of Geoscience and Environment Protection, 06, 25-37.
  • Liu X., Liu C., Luo Y., Zhang M., Xia J., (2012), Dramatic decrease in streamflow from the headwater source in the central route of China's water diversion project: Climatic variation or human influence?, Journal of Geophysical Research: Atmospheres 117, 1-10.
  • Mann H.B., (1945), Nonparametric tests against trend, Econometrica: Journal of the econometric society, 245-259.
  • Marini G., Fontana N., Mishra A.K., (2018), Investigating drought in Apulia region, Italy using SPI and RDI, Theoretical and Applied Climatology, 137, 383-397.
  • McKee T.B., Doesken N.J., Kleist J., (1993), The relationship of drought frequency and duration to time scales, Proceedings of the 8th Conference on Applied Climatology, Boston, 179-183.
  • Mishra A.K., Desai V.R., (2005), Spatial and temporal drought analysis in the Kansabati river basin, India, International Journal of River Basin Management, 3, 31-41.
  • Naz D., Ansari J.K., (2020), Drought Trends in Balochistan, Water, 12(2), 470, doi: doi.org/10.3390/w12020470.
  • Nazmi D., Aydinsakir K., Mesut I., Buyuktas D., (2016), Standartlaştırılmış yağış indeksi (SPI) yöntemi ile Antalya ili kuraklık analizi, Derim, 33, 279-298.
  • Nourani V., Danandeh Mehr A., Azad N., (2018), Trend analysis of hydroclimatological variables in Urmia lake basin using hybrid wavelet Mann–Kendall and Şen tests, Environmental Earth Sciences, 77, 207, doi: 10.1007/s12665-018-7390-x.
  • Nyatuame M., Agodzo S., (2017), Analysis of Extreme Rainfall Events (Drought and Flood) over Tordzie Watershed in the Volta Region of Ghana, Journal of Geoscience and Environment Protection, 05, 275-295.
  • Omonijo T.O., Okogbue E.C., (2014), Trend Analysis of Drought in the Guinea and Sudano-Sahelian Climatic Zones of Northern Nigeria (1907-2006), Atmospheric and Climate Sciences, 04, 483-507.
  • Palmer W.C., (1965), Meteorological drought, US Department of Commerce, Weather Bureau.
  • Pettitt A.N., (1979), A Non-Parametric Approach to the Change-Point Problem, Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(2), 126-135.
  • Sharafati A., Nabaei S., Shahid S., (2020), Spatial assessment of meteorological drought features over different climate regions in Iran, International Journal of Climatology, 40, 1864-1884.
  • Şen Z., (2012), Innovative Trend Analysis Methodology, Journal of Hydrologic Engineering, 17, 1042-1046.
  • Tosunoglu F., Kisi O., (2017), Trend Analysis of Maximum Hydrologic Drought Variables Using Mann-Kendall and Şen's Innovative Trend Method, River Research and Applications, 33, 597-610.
  • Vermes L., (1998), How to work out a drought mitigation strategy, An ICID Guide. Guidelines for Water Management. Bonn. DVWK 309, 29.
  • Vicente‐Serrano S.M. vd., (2020), Long‐term variability and trends in meteorological droughts in Western Europe (1851–2018), International Journal of Climatology, 41(S1), 690-717.
  • Wilhite D.A., (2000), Drought as a natural hazard: concepts and definitions, in: Wilhite, D.A. (Ed.), Drought: A Global Assessment, Routledge, ss. 3-18.
  • Wilhite D.A., Glantz M.H., (1985), Understanding: the Drought Phenomenon: The Role of Definitions, Water International, 10, 111-120.

Trend Analysis of Historical Drought During 1929-2016 in Diyarbakır Station with Innovative Şen Method

Yıl 2021, Cilt 7, Sayı 2, 362 - 373, 25.07.2021
https://doi.org/10.21324/dacd.884682

Öz

Drought, a natural disaster, affects various sectors such as water supply, hydropower generation, agriculture, and industry. It is important to determine temporal change of drought in order to use water resources effectively and efficiently. In this study, drought analysis is performed using monthly total precipitation data measured between 1929-2016 at the meteorology observation station in Diyarbakır, Turkey. A homogeneity test is also made before drought analysis. The Standardized Precipitation Index (SPI) method is used to determine drought for 1, 3, 6 and 12 months’ time scales, and Innovative Şen Method (also known as Innovative Trend Analysis-ITA) is used to identify the trend of drought indices values for different time scales. The driest periods are determined according to time scales of 1, 3, 6 and 12 months are found as 8, 18, 21 and 53 months, respectively. While the percentage of dry periods is 40% for the 1-month time scale (SPI-1), and about 50% for the other time scales. The percentage of droughts (sum of moderate, severe, and extreme drought) for 3-months (SPI-3), 6-months (SPI-6) and 12-months (SPI-12) is between 15% and 16.5%. The ITA method results show that a weak decreasing trend found on SPI-12 for indices value greater than 0.8, and a strong decreasing trend (more than 5%) is calculated for moderate wet values. In addition, it is determined that the index values, less than -3 and -3, in SPI-12 values shows a very strong increasing trend (more than 10%). Its means that the extreme dry situation has decreased in recent years.

Kaynakça

  • Alexandersson H., Moberg A., (1997), Homogenization of Swedish Temperature Data. Part I: Homogeneity Test for Linear Trends, International Journal of Climatology, 17, 25-34.
  • Andreadis K.M., Lettenmaier D.P., (2006), Trends in 20th century drought over the continental United States, Geophysical Research Letters, 33, 1-4.
  • Botterill L.C., (2003), Beyond drought: People, Policy and Perspectives, CSIRO Publishing, 248ss.
  • Buishand T.A., (1982), Some methods for testing the homogeneity of rainfall records, Journal of Hydrology, 58, 11-27.
  • Byun H.R., Wilhite D.A., (1999), Objective Quantification of Drought Severity and Duration, Journal of Climate, 12, 2747-2756.
  • Caloiero T., (2018), SPI trend analysis of New Zealand applying the ITA technique, Geosciences, 8(3), 101, doi: 10.3390/geosciences8030101.
  • Cui L., Wang L., Lai Z., Tian Q., Liu W., Li J., (2017), Innovative trend analysis of annual and seasonal air temperature and rainfall in the Yangtze River Basin, China during 1960–2015, Journal of Atmospheric and Solar-Terrestrial Physics, 164, 48-59.
  • Çiçek İ., Duman N., (2015), Seasonal and annual precipitation trends in Turkey, Carpathian Journal of Earth and Environmental Sciences, 10, 77-84.
  • Dashtpagerdi M.M., Kousari M.R., Vagharfard H., Ghonchepour D., Hosseini M.E., Ahani H., (2015), An investigation of drought magnitude trend during 1975–2005 in arid and semi-arid regions of Iran, Environmental earth sciences, 73, 1231-1244.
  • Dikici M., (2020), Drought analysis with different indices for the Asi Basin (Turkey), Scientific Reports, 10, 20739, doi: 10.1038/s41598-020-77827-z.
  • Gumus V., Algin H.M., (2017), Meteorological and hydrological drought analysis of the Seyhan−Ceyhan River Basins, Turkey, Meteorological Applications, 24, 62-73.
  • Gumus V., (2019), Spatio‐temporal precipitation and temperature trend analysis of the Seyhan–Ceyhan River Basins, Turkey, Meteorological Applications, 26, 369-384.
  • Hadi S.J., Tombul M., (2018), Long-term spatiotemporal trend analysis of precipitation and temperature over Turkey, Meteorological Applications, 25, 445-455.
  • Heim R.R., (2002), A Review of Twentieth-Century Drought Indices Used in the United States, Bulletin of the American Meteorological Society, 83, 1149-1166.
  • Jamro S., Channa F.N., Dars G.H., Ansari K., Krakauer N.Y., (2020), Exploring the Evolution of Drought Characteristics in Balochistan, Pakistan, Applied Sciences, 10(3), 913, doi: 10.3390/app10030913.
  • Kendall M.G., (1948), Rank correlation methods. Griffin, London, England.
  • Keskin M.E., Terzi O., Taylan D., Kucukyaman D., (2011), Meteorological drought analysis using artificial neural networks, Scientific Research and Essays, 6, 4469-4477.
  • Liu C., Yang C., Yang Q., Wang J., (2021), Spatiotemporal drought analysis by the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in Sichuan Province, China, Scientific Reports, 11, 1280, doi: 10.1038/s41598-020-80527-3.
  • Liu D., You J., Xie Q., Huang Y., Tong H., (2018), Spatial and Temporal Characteristics of Drought and Flood in Quanzhou Based on Standardized Precipitation Index (SPI) in Recent 55 Years, Journal of Geoscience and Environment Protection, 06, 25-37.
  • Liu X., Liu C., Luo Y., Zhang M., Xia J., (2012), Dramatic decrease in streamflow from the headwater source in the central route of China's water diversion project: Climatic variation or human influence?, Journal of Geophysical Research: Atmospheres 117, 1-10.
  • Mann H.B., (1945), Nonparametric tests against trend, Econometrica: Journal of the econometric society, 245-259.
  • Marini G., Fontana N., Mishra A.K., (2018), Investigating drought in Apulia region, Italy using SPI and RDI, Theoretical and Applied Climatology, 137, 383-397.
  • McKee T.B., Doesken N.J., Kleist J., (1993), The relationship of drought frequency and duration to time scales, Proceedings of the 8th Conference on Applied Climatology, Boston, 179-183.
  • Mishra A.K., Desai V.R., (2005), Spatial and temporal drought analysis in the Kansabati river basin, India, International Journal of River Basin Management, 3, 31-41.
  • Naz D., Ansari J.K., (2020), Drought Trends in Balochistan, Water, 12(2), 470, doi: doi.org/10.3390/w12020470.
  • Nazmi D., Aydinsakir K., Mesut I., Buyuktas D., (2016), Standartlaştırılmış yağış indeksi (SPI) yöntemi ile Antalya ili kuraklık analizi, Derim, 33, 279-298.
  • Nourani V., Danandeh Mehr A., Azad N., (2018), Trend analysis of hydroclimatological variables in Urmia lake basin using hybrid wavelet Mann–Kendall and Şen tests, Environmental Earth Sciences, 77, 207, doi: 10.1007/s12665-018-7390-x.
  • Nyatuame M., Agodzo S., (2017), Analysis of Extreme Rainfall Events (Drought and Flood) over Tordzie Watershed in the Volta Region of Ghana, Journal of Geoscience and Environment Protection, 05, 275-295.
  • Omonijo T.O., Okogbue E.C., (2014), Trend Analysis of Drought in the Guinea and Sudano-Sahelian Climatic Zones of Northern Nigeria (1907-2006), Atmospheric and Climate Sciences, 04, 483-507.
  • Palmer W.C., (1965), Meteorological drought, US Department of Commerce, Weather Bureau.
  • Pettitt A.N., (1979), A Non-Parametric Approach to the Change-Point Problem, Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(2), 126-135.
  • Sharafati A., Nabaei S., Shahid S., (2020), Spatial assessment of meteorological drought features over different climate regions in Iran, International Journal of Climatology, 40, 1864-1884.
  • Şen Z., (2012), Innovative Trend Analysis Methodology, Journal of Hydrologic Engineering, 17, 1042-1046.
  • Tosunoglu F., Kisi O., (2017), Trend Analysis of Maximum Hydrologic Drought Variables Using Mann-Kendall and Şen's Innovative Trend Method, River Research and Applications, 33, 597-610.
  • Vermes L., (1998), How to work out a drought mitigation strategy, An ICID Guide. Guidelines for Water Management. Bonn. DVWK 309, 29.
  • Vicente‐Serrano S.M. vd., (2020), Long‐term variability and trends in meteorological droughts in Western Europe (1851–2018), International Journal of Climatology, 41(S1), 690-717.
  • Wilhite D.A., (2000), Drought as a natural hazard: concepts and definitions, in: Wilhite, D.A. (Ed.), Drought: A Global Assessment, Routledge, ss. 3-18.
  • Wilhite D.A., Glantz M.H., (1985), Understanding: the Drought Phenomenon: The Role of Definitions, Water International, 10, 111-120.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Yayınlanma Tarihi Temmuz 2021
Bölüm Araştırma Makalesi
Yazarlar

Veysel GÜMÜŞ (Sorumlu Yazar)
HARRAN ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ
0000-0003-2321-9526
Türkiye


Latif Doğan DİNSEVER
HARRAN ÜNİVERSİTESİ
0000-0001-8573-1539
Türkiye


Oğuz ŞİMŞEK
HARRAN ÜNİVERSİTESİ
0000-0001-6324-0229
Türkiye

Yayımlanma Tarihi 25 Temmuz 2021
Yayınlandığı Sayı Yıl 2021, Cilt 7, Sayı 2

Kaynak Göster

Bibtex @araştırma makalesi { dacd884682, journal = {Doğal Afetler ve Çevre Dergisi}, issn = {}, eissn = {2528-9640}, address = {}, publisher = {Artvin Çoruh Üniversitesi}, year = {2021}, volume = {7}, pages = {362 - 373}, doi = {10.21324/dacd.884682}, title = {Diyarbakır İstasyonunda 1929–2016 Boyunca Tarihsel Kuraklığın Yenilikçi Şen Yöntemi ile Trend Analizi}, key = {cite}, author = {Gümüş, Veysel and Dinsever, Latif Doğan and Şimşek, Oğuz} }
APA Gümüş, V. , Dinsever, L. D. & Şimşek, O. (2021). Diyarbakır İstasyonunda 1929–2016 Boyunca Tarihsel Kuraklığın Yenilikçi Şen Yöntemi ile Trend Analizi . Doğal Afetler ve Çevre Dergisi , 7 (2) , 362-373 . DOI: 10.21324/dacd.884682
MLA Gümüş, V. , Dinsever, L. D. , Şimşek, O. "Diyarbakır İstasyonunda 1929–2016 Boyunca Tarihsel Kuraklığın Yenilikçi Şen Yöntemi ile Trend Analizi" . Doğal Afetler ve Çevre Dergisi 7 (2021 ): 362-373 <http://dacd.artvin.edu.tr/tr/pub/issue/64187/884682>
Chicago Gümüş, V. , Dinsever, L. D. , Şimşek, O. "Diyarbakır İstasyonunda 1929–2016 Boyunca Tarihsel Kuraklığın Yenilikçi Şen Yöntemi ile Trend Analizi". Doğal Afetler ve Çevre Dergisi 7 (2021 ): 362-373
RIS TY - JOUR T1 - Diyarbakır İstasyonunda 1929–2016 Boyunca Tarihsel Kuraklığın Yenilikçi Şen Yöntemi ile Trend Analizi AU - Veysel Gümüş , Latif Doğan Dinsever , Oğuz Şimşek Y1 - 2021 PY - 2021 N1 - doi: 10.21324/dacd.884682 DO - 10.21324/dacd.884682 T2 - Doğal Afetler ve Çevre Dergisi JF - Journal JO - JOR SP - 362 EP - 373 VL - 7 IS - 2 SN - -2528-9640 M3 - doi: 10.21324/dacd.884682 UR - https://doi.org/10.21324/dacd.884682 Y2 - 2021 ER -
EndNote %0 Doğal Afetler ve Çevre Dergisi Diyarbakır İstasyonunda 1929–2016 Boyunca Tarihsel Kuraklığın Yenilikçi Şen Yöntemi ile Trend Analizi %A Veysel Gümüş , Latif Doğan Dinsever , Oğuz Şimşek %T Diyarbakır İstasyonunda 1929–2016 Boyunca Tarihsel Kuraklığın Yenilikçi Şen Yöntemi ile Trend Analizi %D 2021 %J Doğal Afetler ve Çevre Dergisi %P -2528-9640 %V 7 %N 2 %R doi: 10.21324/dacd.884682 %U 10.21324/dacd.884682
ISNAD Gümüş, Veysel , Dinsever, Latif Doğan , Şimşek, Oğuz . "Diyarbakır İstasyonunda 1929–2016 Boyunca Tarihsel Kuraklığın Yenilikçi Şen Yöntemi ile Trend Analizi". Doğal Afetler ve Çevre Dergisi 7 / 2 (Temmuz 2021): 362-373 . https://doi.org/10.21324/dacd.884682
AMA Gümüş V. , Dinsever L. D. , Şimşek O. Diyarbakır İstasyonunda 1929–2016 Boyunca Tarihsel Kuraklığın Yenilikçi Şen Yöntemi ile Trend Analizi. DACD. 2021; 7(2): 362-373.
Vancouver Gümüş V. , Dinsever L. D. , Şimşek O. Diyarbakır İstasyonunda 1929–2016 Boyunca Tarihsel Kuraklığın Yenilikçi Şen Yöntemi ile Trend Analizi. Doğal Afetler ve Çevre Dergisi. 2021; 7(2): 362-373.
IEEE V. Gümüş , L. D. Dinsever ve O. Şimşek , "Diyarbakır İstasyonunda 1929–2016 Boyunca Tarihsel Kuraklığın Yenilikçi Şen Yöntemi ile Trend Analizi", Doğal Afetler ve Çevre Dergisi, c. 7, sayı. 2, ss. 362-373, Tem. 2021, doi:10.21324/dacd.884682

Creative Commons License
Doğal Afetler ve Çevre Dergisi, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License ile lisanlanmıştır.