Araştırma Makalesi
BibTex RIS Kaynak Göster

A Morphometric Approach to Bozkurt (Kastamonu-Türkiye) Flood

Yıl 2023, Cilt: 9 Sayı: 2, 216 - 239, 30.07.2023
https://doi.org/10.21324/dacd.1210797

Öz

This study aims to analyze the flood disaster that occurred in Kastamonu-Bozkurt in 2021 through the morphometric parameters of the basin. In the study, the Basin of Ezine Stream, which is the flood experienced most effectively, was analyzed together with the neighboring basins. Bozkurt flood is one of the most destructive floods in the history of Türkiye. As a result of the floods that occurred in Kastamonu and neighboring provinces on 10th - 12th August 2021, 82 people lost their lives. The Digital Elevation Model (DEM) of the study area was created with a cell size of 10*10 m using topography maps, and the boundaries of the basins to be analyzed with the ArcGIS-Archydro Module were determined. 30 indices were applied to these basins within the scope of shape (geometric), areal and relief morphometric features of the basins. The relationship between morphometric parameters was determined with the Pearson correlation coefficient. When the analysis results are evaluated for the Basin of Ezine Stream, it is the basin with the largest area, and the largest value of basin relief, relative relief and ruggedness. As a result, erosional activities and the risk of flood are high. When all basins are evaluated in general, it has been revealed that the shape of basins are more elongated, and the features of relief morphometry facilitate the formation of floods. Basin relief, relative relief, dissection degree, slope values, and average slope values are high for all basins; and both the amount of water added to the overland flow and the speed of the overland flow increased. This situation also increased the amount of material carried during the flood. Constructions built close to the stream bed increased the effect of the flood. Depending on the global climate change, the study area corresponds to the area where the change in daily maximum precipitation varies between 5-10%. Therefore, floods are likely to continue. For this reason, it is recommended to consider geometric, areal and relief morphometric features of the basins along with the climatic features of the basins while taking the necessary precautions. According to CORINE land cover data, urban areas in the Ezine Stream Basin increased by over 100% between 1990 and 2018, which is also affected by disastrous floods and overflows. Conservation and strengthening of natural vegetation in the study area will reduce the damage level of floods and overflows.

Kaynakça

  • Abdelouhed F., Ahmed A., Abdellah A., Yassine B., Mohammed I., (2021), Using GIS and remote sensing for the mapping of potential groundwater zones in fractured environments in the Chaouıa-Morocco area, Remote Sensing Applications: Society and Environment, 23, 100571-100516.
  • Addis A., (2023), GIS – based flood susceptibility mapping using frequency ratio and information value models in upper Abay river basin, Ethiopia, Natural Hazards Research, 3(2), 247-256.
  • Ahad U., Shah A.R., Ali U., (2022), Quantitative estimation of drainage characteristics of the Pohru Catchment, Kashmir valley, India: a remote sensing and GIS based approach, Geocarto International, 37(26), 13839-13859.
  • Alexeevsky N., Magritsky D.V., Koltermann K.P., Krylenko I., Toropov P., (2016), Causes and systematics of inundations of the Krasnodar territory on the Russian Black Sea coast, Natural Hazards Earth System Sciences, 16(6), 1289-1308.
  • Ali S.A., Khan N., (2013), Evaluation of morphometric parameters-A remote sensing and GIS based approach, Open Journal of Modern Hydrology, 3(1), 27229, 20-27.
  • Alqahtani F., Qaddah A.A., (2019), GIS digital mapping of flood hazard in Jeddah–Makkah region from morphometric analysis, Arabian Journal Geosciences, 12, 199, doi: 10.1007/s12517-019-4338-8.
  • Al-Neama S.N., Yang S., Yayha B.M., (2022), Evaluation of surface run-off potential of basins in Nineveh governorate, Iraq based on morphometric analysis, using RS and GIS, Materials Today: Proceedings, 60(3), 1753-1768.
  • Ameri A.A., Pourghasemi H.R., Cerda A., (2018), Erodibility prioritization of sub-watersheds using morphometric parameters analysis and ıts mapping: A comparison among TOPSIS, VIKOR, SAW, and CF multi-criteria decision making models, Science of The Total Environment, 613-614, 1385-1400.
  • Atalay İ., (2018), Uygulamalı hidroğrafya, Meta Basım Matbaacılık Hizmetleri, İzmir, Türkiye, 350ss.
  • Baduna Koçyiğit M., Akay H., (2019), Estimation of flash flood potential of gökırmak basin using morphometric parameters, Proceedings International Science and Engineering Applications Symposium on Hazards 2019, Karabuk, Turkey, ss.150-158.
  • Bali R., Agarwal K.K., Nawaz Ali S., Rastogi S.K., Krishna K., (2012), Drainage morphometry of Himalayan Glacio-fluvial basin, India: hydrologic and neotectonic implications, Environmental Earth Science, 66, 1163-1174.
  • Baltacı H., (2017), Meteorological analysis of flash floods in Artvin (NE Turkey) on 24 August 2015, Natural Hazards Earth System Sciences, 17(7), 1221-1230.
  • Beg A.A.F., (2015), Morphometric toolbox: a new technique in basin morphometric analysis using ArcGIS, Global Journal of Earth Science Engineering, 2(2), 21-30.
  • Bendjoudi H., Hubert P., (2002), The Gravelius compactness coefficient: critical analysis of a shape index for drainage basins, Hydrological Sciences Journal, 47(6), 921-930.
  • Bilgen G., Balcı E., Kalça M.Y., (2022), Kastamonu Bozkurt ilçesinde 11.08.2021 tarihinde meydana gelen sel felaketinin yerinde incelenmesi, Fenerbahçe ÜniversitesiTasarım Mimarlık ve Mühendislik Dergisi, 2(1), 20-35.
  • Bogale A., (2021), Morphometric analysis of a drainage basin using geographical information system in Gilgel Abay watershed, Lake Tana Basin, upper Blue Nile Basin, Ethiopia, Applied Water Science, 11, 122, doi: 10.1007/s13201-021-01447-9.
  • Brahim B., Larbi B., Abdallah D., Driss S., (2016), Utilisation du sig dans l’analyse morphometrique et la prioritisation des sous-bassins versants de oued ınaouene (Nord-Est du maroc), European Scientific Journal, 12(6), 283-306.
  • Chai L., Zhong C.D., Guo F.S., Huang X.S., Wang D.Y., Shao C.J., Chen L.Q., (2022), Evolution stage, spatial and temporal variabilities of granite landforms in the Mount Wugongshan in Jiangxi Province of South China, Journal of Mountain Science, 19, 2743-2757.
  • Charizopoulos N., Mourtzios P., Psilovikos T., Psilovikos A., Karamoutsou L., (2019), Morphometric analysis of the drainage network of Samos Island (northern Aegean Sea): Insights into tectonic control and flood hazards, Comptes Rendus Geoscience, 351(5), 375-383.
  • Choudhari P.P., Nigam G.K., Singh S.K., Thakur S., (2018), Morphometric based prioritization of watershed for groundwater potential of Mula river basin, Maharashtra, India, Geology, Ecology, and Landscapes, 2(4), 256-267.
  • Chauhan N., Paliwal R., Kumar V., Kumar S., Kumar R., (2022), Watershed prioritization in Lower Shivaliks Region of India using ıntegrated principal component and hierarchical cluster analysis techniques: A case of Upper Ghaggar Watershed, Journal of the Indian Society of Remote Sensing, 50(6), 1051-1070.
  • Chorley R.J., Malm D.E.G., Pogorzelski H.A., (1957), A new standard for estimating drainage basin shape, American Journal of Science, 255(2), 138-141.
  • Çanta E.E., Temuçin Kılıçer S., Akıncı H., (2022), FLO-2D ve HEC-RAS Yazılımları ile Ardanuç (Artvin) İlçesindeki Pona Deresi ve Örtülü Deresi’nin Taşkın Yayılım Haritalarının Karşılaştırmalı Üretilmesi, Turkish Journal of Remote Sensing and GIS, 3(1), 50-64.
  • Coşkun S., (2021), Küre Dağlarının Kastamonu iklimi üzerindeki etkileri, Türk Coğrafya Dergisi, 77, 37-52.
  • Davis W.M., (1899), The geographical cycle, The Geographical Journal, 14(5), 481-504.
  • Demircan M., Gürkan H., Eskioğlu O., Arabacı H., Coşkun M., (2017), Climate change projections for Turkey: Three models and two scenarios, Turkish Journal of Water Science and Management, 1(1), 22-43.
  • Demir V., Ülke Keskin A., (2022a), Taşkın tehlike haritalarının oluşturulması (Samsun, Mert Irmağı örneği), Türkiye Coğrafi Bilgi Sistemleri Dergisi, 4(1), 47-54.
  • Demir V., Ülke Keskin A., (2022b), Taşkınların ekonomik zararlarının değerlendirilmesi (Samsun-Mert Irmağı Havzası), Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi, 14(2), 663-678.
  • Demir V., Ülke Keskin A., (2022c), Yeterince akım ölçümü olmayan nehirlerde taşkın debisinin hesaplanması ve taşkın modellemesi (Samsun, Mert Irmağı örneği), Geomatik , 7(2), 149-162.
  • DEMP, (2022), Disaster Statistics, Disaster and Emergency Management Presidency, Ankara.
  • Doğan O.H., Önol B., Turunçoğlu U.U., Kahraman A., (2019), Heavy Precipitation sensitivity of sea surface temperature over the Eastern Blacksea Region: Ensemble simulations of Hopa/Artvin case, Proceedings 9th International Symposium on Atmospheric Sciences (ATMOS 2019), ITU, Istanbul, ss.614-618.
  • Dongare C.U., Deota B.S., Deshpande R.D., (2022), High resolution morphometric studies with special reference to hydrological setup of Khapri watershed, Dangs district, Gujarat, Western India, Geocarto International, 37(13), 3697-3720.
  • Doornkamp J.C., King C.A., (1971), Numerical Analysis in Geomorphology-Introduction, Edward Arnold, London, UK, 372ss.
  • Erdede B., Öztürk D., (2016), Kızılırmak havzasının taşkın potansiyelinin çizgisel, alansal ve rölyef morfometrik indisler kullanılarak değerlendirilmesi, 6. Uzaktan Algılama-CBS Sempozyumu (UZAL-CBS 2016), Adana, Türkiye, pp.392-399.
  • Ertürk E., Kaya N., (2019), Taşkın tehlike alanlarının oluşturulması: Trabzon ili Vakfıkebir ilçesi Kirazlı Deresi örneği, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 31(2), 337-344.
  • ESRI, (2022), ArcGIS Earth desktop apps, Environmental Systems Research Institute, https://www.esri.com/en-us/arcgis/products/arcgis-earth/downloads, [Accessed 09 November 2021].
  • Faniran A., (1968), The index of drainage Intensity-a provisional new drainage factor, Australian Journal of Science, 31(9), 328-330.
  • Faye C., Ndiaye M., (2021), Use of geospatial tools in morphometric analysis and prioritisation of sub-catchments of the Soungrougrou (Casamance Basın), Quaestıones Geographicae, Sciendo, 40(3), 65-84.
  • GDM, (2010), 1/25.000 scale standart topographic maps, (Map sheets: E31c1,c2, E32 d1, E32 a1, a2, a4, E32 b1, b2, b3, b4), General Directorate of Mapping, Ankara, Türkiye.
  • GDWM, (2014), Guidelines for the preparation of flood risk management plans, General Directorate of Water Management, http://taskinyonetimi.suyonetimi.gov.tr/taskin/Files/Outputs/TRYP_Kilavuzlar.pdf, [Accessed 11 May 2019].
  • Gravelius H., (1914), Grundrifi der Gesamten Gewcisserkunde, Band I: Flufikunde (Compendium of Hydrology, vol. I. Rivers), Goschen, Berlin, German.
  • Gülbaz S., (2019), Sayısal modeller ile taşkın yayılım haritasının oluşturulması ve risk altında olan alanların belirlenmesi: Türkköse Deresi örneği, Doğal Afetler ve Çevre Dergisi, 5(2), 335-349.
  • Hamdan A.M., (2020), Hydro-Morphometric analysis using geospatial technology: A case study of Wadi Gabgaba and Wadi Allaqi Watersheds, Southern Egypt-Northern Sudan, Journal of Asian Scientific Research, 10(3), 190-212.
  • Halis O., Gönençgil B., Acar Z., (2022), An atmospheric approach to the flood disaster in the Western Black Sea region (Turkey) on 10-12 August 2021, Natural Hazards and Earth System Sciences, doi: 10.5194/nhess-2022-185.
  • Horton R.E., (1932), Drainage-basin characteristics Eos, transactions american geophysical union, 13(1), 350-361.
  • Horton R.E., (1945), Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology, Geological society of America bulletin, 56(3), 275-370.
  • Islam A., Deb Barman S., (2020), Drainage basin morphometry and evaluating its role on flood-inducing capacity of tributary basins of Mayurakshi River, India, SN Applied Science, 2, 1087, doi: 10.1007/s42452-020-2979-6.
  • Jackson A., (2012), Discharge & hydrographs, Geography AS Notes, https:// geographyas.info/rivers/discharge-and-hydrographs/, (Accessed 10 December 2022).
  • Javed A., Khanday M.Y., Rizwan A., (2009), Prioritization of sub-watersheds based on morphometric and land use analysis using remote sensing and gıs techniques, Journal of the Indian Society of Remote Sensing, 37, 261-274.
  • Jose C., Thomas J., Prasannakumar V., Reghunath R., (2019), BaDAM toolbox: A GIS-Based approach for automated drainage basin morphometry, Journal of the Indian Society of Remote Sensing, 47, 46-478.
  • Jothimani M., Abebe A., Berhanu G., (2022), Application of remote sensing, GIS, and drainage morphometric analysis in groundwater potential assessment for sustainable development in Iyenda River Catchment, Konso Zone, Rift Valley, Southern Ethiopia, IOP Conf. Series: Earth and Environmental Science, 982, 012032, doi: 10.1088/1755-1315/982/1/012032.
  • Kaliraj S., Chandrasekar N., Magesh N.S., (2015), Morphometric analysis of the River Thamirabarani sub-basin in Kanyakumari District, South west coast of Tamil Nadu, India, using remote sensing and GIS, Environmental Earth Sciences, 73, 7375-7401.
  • Kapochkina A., Kapochkin B., Kucherenko N., Uchytel I., (2015), Floods and droughts as a result of deformability of the geological environment, Meteorology Hydrology and Water Managegement, 3(2), 3-7.
  • Keller E.A., Pinter N., (2002), Active tectonics: Earthquakes, uplift, and landscape, Prentice-Hall, New Jersey, NY, USA, 362ss.
  • Khalifa A., Bashir B., Alsalman A., Bachir H., (2022), Morphometric-Hydro Characterization of the Coastal Line between El-Qussier and Marsa-Alam, Egypt: Preliminary Flood Risk Signatures, Applied Sciences, 12(12), 6264, doi: 10.3390/app12126264.
  • Kılıç B., Gülgen F., Çelen M., Öncel M.S., Oruç H.N., Vural S., (2022), Morphometric analysis of Saz-Çayırova Drainage Basin using geographic ınformation systems and different digital elevation models, International Journal of Environment and Geoinformatics (IJEGEO), 9(2), 177-186.
  • Korshenko E., Zhurbas V., Osadchiev A., Belyakova P., (2020), Fate of river-borne floating litter during the flooding event in the northeastern part of the Black Sea in October 2018, Marine Pollution Bulletin 160, 111678, doi: 10.1016/j.marpolbul.2020.111678.
  • Kühni A., Pfiffner O.A., (2001), The relief of the Swiss Alps and adjacent areas and its relation to lithology and structure: Topographic analysis from a 250-m DEM, Geomorphology, 41(4), 285-307.
  • Kumar S., Chaudhary B.S., (2016), GIS applications in morphometric analysis of Koshalya-Jhajhara Watershed in northwestern India, Journal of the Geological Society of India, 88, 585-592.
  • López-Ramos A., Medrano-Barboza J.P., Martínez-Acosta L., Acuña G.J., Remolina López J.F., López-Lambraño A.A., (2022), Assessment of morphometric parameters as the basis for hydrological ınferences in water resource management: A case study from the Sinú River Basin in Colombia, ISPRS International Journal of Geo-Information, 11(9), 459, doi:10.3390/ijgi11090459.
  • Mahala A., (2020), The significance of morphometric analysis to understand the hydrological and morphological characteristics in two different morpho-climatic settings, Applied Water Science, 10, 33, doi: 10.1007/s13201-019-1118-2.
  • Makhamreh Z., Al-Hawary M., Odeh S., (2020), Assessment of morphometric characteristics of Wadi Al-Shumar catchment in Jordan, Open Journal of Geology, 10(2), 155-170.
  • Malik M.I., AL-Shammary S.H., AL-Hamzawy H.M., (2016), Morphometric analysis of Al-Chabab River Basin East of Iraq using remote sensing and gis techniques, International Journal of Scientific Engineering and Research (IJSER), 4(3), 53-58.
  • Mani A., Kumari M., Badola R., (2022), Morphometric Analysis of Suswa River Basin Using Geospatial Techniques, Engineering Proceedings, 27(1), 65, doi: 10.3390/ecsa-9-13225.
  • Marchi L., Dalla Fontana G., (2005), GIS morphometric indicators for the analysis of sediment dynamics in mountain basins, Environmental Geology, 48, 218-228.
  • Melton M.A., (1957), An analysis of the relations among elements of climate, surface properties, and geomorphology, Columbia University, Department of Geology, Technical Report No: ONR-11, New York, NY, USA, 118ss.
  • Melton M.A., (1965), The geomorphic and paleoclimatic significance of alluvial deposits in southern Arizona, The Journal of geology, 73(1), 1-38.
  • Meshram S.G., Sharma S.K., (2017), Prioritization of watershed through morphometric parameters: a PCA-based approach, Applied Water Science, 7, 1505-1519.
  • Miller V.C., (1953), A quantitative geomorphologic study of drainage basin characteristics in the clinch mountain area, Virginia and Tennessee, The Journal of Geology, 65(1), 271-300.
  • Nautiyal, M. D., (1994), Morphometric analysis of a drainage basin using aerial photographs: A case study of Khairkuli basin, district Dehradun, U.P. Journal of the Indian Society of Remote Sensing, 22, 251-261.
  • Nir D., (1957), The ratio of relative and absolute altitudes of Mt. Carmel: A contribution to the problem of relief analysis and relief classification, Geographical Review, 47(4), 564-569.
  • Nooka Ratnam K., Srivastava Y.K., Venkateswara Rao V., Amminedu E., Murthy K.S.R., (2005), Check dam positioning by prioritization of micro-watersheds using SYI model and morphometric analysis-Remote sensing and GIS perspective, Journal of the Indian Society of Remote Sensing, 33, 25-38.
  • Oğraş S., Önen F., (2019), Dicle Nehri’nin taşkın analizinin HEC-RAS programı ile yapılması, Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 10(3), 1087-1098.
  • Oyedotun T.D.T., (2022), Quantitative assessment of the drainage morphometric characteristics of Chaohu Lake Basin from SRTM DEM Data: a GIS-based approach, Geology Ecology Landscape, 6(3), 174-187.
  • Pareta K., Pareta U., (2012), Quantitative geomorphological analysis of a Watershed of Ravi River Basin, H.P. India, International Journal of Remote Sensing and GIS, 1(1), 47-62.
  • Pathare J.A., Pathare A.R., (2020), Prioritization of micro-watershed based on morphometric analysis and runoff studies in upper Darna basin, Maharashtra, India, Modeling Earth Systems and Environment, 6, 1123-1130.
  • Perez-Pena J.V., Azanon J.M., Azor A., (2009), CalHypso: An ArcGIS extension to calculate hypsometric curves and their statistical moments, Applications to drainage basin analysis in SE Spain, Computers & Geosciences, 35(6), 1214-1223.
  • Rai P.K., Mishra V.N., Mohan K., (2017a), A study of morphometric evaluation of the Son basin, India using geospatial approach, Remote Sensing Applications: Society and Environment, 7, 9-20.
  • Rai P.K., Mohan K., Mishra S., Ahmad A., Mishra V.N., (2017b), A GIS-based approach in drainage morphometric analysis of Kanhar River Basin, India, Applied Water Science, 7, 217-232.
  • Reddy G.P.O., Maji A.K., Gajbhiye K.S., (2004), Drainage morphometry and its influence on landform characteristics in a basaltic terrain, Central India–a remote sensing and GISf approach, International Journal of Applied Earth Observation and Geoinformation, 6(1), 1-16.
  • Roy S., Das S., Sengupta S., (2022), Predicting terrain erosion susceptibility from drainage basin morphometry using ALOS‑PALSAR DEM: analysis from PCA‑weighted AHP approach in a river system of Eastern India, Environment, Development and Sustainability, doi: 10.1007/s10668-022-02450-z.
  • Said S., Siddique R., Shakeel M., (2018), Morphometric analysis and sub-watersheds prioritization of Nagmati River watershed, Kutch District, Gujarat using GIS based approach, Journal of Water and Land Development, 39(1), 131-139.
  • Sakthivel R., Raj N.J., Sivasankar V., Akhila P., Omine K., (2019), Geo-spatial technique-based approach on drainage morphometric analysis at Kalrayan Hills, Tamil Nadu, India, Applied Water Science, 9, 1-18, doi: 10.1007/s13201-019-0899-7.
  • Sarkar D., Mondal P., (2020), Flood vulnerability mapping using frequency ratio (FR) model: a case study on Kulik river basin, Indo-Bangladesh Barind region, Applied Water Science, 10(1), 1-13, doi: 10.1007/s13201-019-1102-x.
  • Schumm S.A., (1956), Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey, Geological Society of America Bulletin, 67(5), 597-646.
  • Shaikh M., Yadav S., Manekar V., (2021), Accuracy assessment of different open-source digital elevation model through morphometric analysis for a semi-arid river basin in the western part of India, Journal of Geovisualization and Spatial Analysis, 5, 1-21.
  • Shankar V.S., Purti N., Ganta N., Mandal K. K., Singh R.P., Kaviarasan T., Satyakeerthy T.R., Jacob S., (2022), Assessment of the hydrological and erosive status of South Andaman’s watersheds using drainage morphometric studies and climatic water balance model, Geocarto International, 37(26), 13391-13418.
  • Sharma S., Mahajan A.K., (2020), GIS-based sub-watershed prioritization through morphometric analysis in the outer Himalayan region of India, Applied Water Science, 10, 1-11, doi: 10.1007/s13201-020-01243-x.
  • Shekar P.R., Mathew A., (2022), Morphometric analysis for prioritizing sub-watersheds of Murredu River basin, Telangana State, India, using a geographical information system, Journal of Engineering and Applied Science, 69, 1-30, doi: 10.1186/s44147-022-00094-4.
  • Smith G.H., (1935), The Relative Relief of Ohio, Geographical Review, 25(2), 272-284.
  • Singh S., Dubey A., (1994), Geoenvironmental planning of watersheds in India, Chugh Publications, Allahabad, India, 199ss.
  • Singh V.G., Singh S.K., (2022), Analysis of geo-morphometric and topo-hydrological indices using COP-DEM: a case study of Betwa River Basin, Central India, Geology, Ecology, and Landscapes, doi: 10.1080/24749508.2022.2097376.
  • Sinha J., Harshavardhana B.G., Sinha A.K., Das Mahapathra S., (2023), A review on remote sensing and GIS technique-based morphometric analysis, Flexible Electronics for Electric Vehicles’in İçinde, (Dwivedi S., Singh S., Tiwari M., Shrivastava A., Ed.), Springer, Singapore, ss. 333- 342.
  • Soni S., (2017), Assessment of morphometric characteristics of Chakrar watershed in Madhya Pradesh India using geospatial technique, Applied Water Science, 7, 2089-2102.
  • Sözer B., Kocaman S., Nefeslioğlu H.A., Fırat O., Gökçeoğlu C., (2019), Değiştirilmiş AHP (M-AHP) yöntemi kullanılarak Ankara için taşkın duyarlılık haritası üretimi, Harita Dergisi, 162, 12-24.
  • Sreedevi P.D., Subrahmanyam K., Ahmed S., (2005), The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain, Environmental Geology, 47, 412-420.
  • Strahler A.N., (1952), Hypsometric (area-altitude) analysis of erosional topography, Geological society of America bulletin, 63(11), 1117-1142.
  • Strahler A.N., (1957), Quantitative analysis of watershed geomorphology, Eos, Transactions American Geophysical Union, 38(6), 913-920.
  • Strahler A.N., (1964), Quantitative geomorphology of drainage basins and channel net work, Handbook of Applied Hydrology’nin İçinde, (Chow V., Ed.), McGraw Hill, New York, USA, ss.39-76.
  • Sukristiyanti S., Maria R., Lestiana H., (2018), Watershed-based Morphometric Analysis: A Review, IOP Conference Series: Earth and Environmental Science, 118, 012028, doi:10.1088/1755-1315/118/1/012028.
  • Sunkar M., Tonbul S., (2010), Batman’da 31 Ekim-1 Kasım 2006 tarihinde yaşanan taşkının nedenleri, II. Ulusal Taşkın Sempozyumu, 22-24 Mart, Afyonkarahisar, ss. 349-361.
  • Şener M., (2011), Determination of basin characteristics by using geographical ınformation Systems (GIS), Journal of Environmental Protection and Ecology, 12(4), 1941-1947.
  • Şener M., Arslanoğlu M.C., (2023), Morphometric analysis in Google Earth Engine: An online interactive web-based application for global-scale analysis, Environmental Modelling & Software, 162, 105640, doi: 10.1016/j.envsoft.2023.105640.
  • TECCWRP, (2016), The Effect of Climate Change on Water Resources Project Report (TECCWRP), The Ministry of Forestry and Water Affairs, General Directorate of Water Management (GDWM), June 2016, Ankara, Türkiye.
  • Thapliyal A., Panwar A., Kimothi S., (2017), Prioritization based on morphometric analysis in Alaknanda Basin, Global Journal of Science Frontier Research H Environment and Earth Science, 17(13), 29-34.
  • Thomas J., Joseph S., Thrivikramaji K.P., (2010), Morphometric aspects of a small tropical mountain river system, the southern Western Ghats, India, International Journal of Digital Earth, 3(2), 135-156.
  • Thomas J., Joseph S., Thrivikramji K.P., Abe G., Kannan N., (2012), Morphometrical analysis of two tropical mountain river basins of contrasting environmental settings, the southern Western Ghats, India, Environmental Earth Sciences, 66, 2353-2366.
  • TSMS, (2022), Temperature and Precipitation Data of Kastamonu, Bozkurt and Abana meteorological stations, Turkish State Meteorological Service (TSMS), Ankara, Türkiye.
  • Turoğlu H., (1997), İyidere havzasının hidrografik özelliklerine sayısal yaklaşım, Türk Coğrafya Dergisi, 32, 355-364. Uğuz M.F., Sevin M., Duru M., (2002), 1/500.000 ölçekli Türkiye jeoloji haritası Sinop paftası, Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.
  • URL-1, (2021), Sel felaketi yaşayan Bozkurt'un sokakları yeniden sular altında, https://www.ntv.com.tr/galeri/turkiye/sel-felaketi-yasayan-bozkurtun-sokaklari-yeniden-sular-altinda,EHD39e_cKk2ZZHgd4wmVvA/A-i0HvP6r0GwZSPc7cgbwA, [Accessed 1 September 2021].
  • URL-2, (2022), Kastamonu hava durumu: İnebolu ve Bozkurt'ta sağanak, https://www.ntv.com.tr/turkiye/kastamonu-hava-durumu-inebolu-ve-bozkurtta-saganak-nedeniyle-sel-taskinlari-yasaniyor,N3mUyex0h0WNz4iAPwYqrg, [Accessed 1 August 2022].
  • URL-3, (2022), Bakan Kurum Kastamonu basın açıklaması, T.C. Çevre, Şehircilik ve İlklim Değişikliği Bakanlığı, https://www.csb.gov.tr/bakan-kurum-kastamonu-basin-aciklamasi-bakanlik-faaliyetleri-34155, [Accessed 08 November 2022].
  • URL-4, (2021), 11 Ağustos 2021 Bozkurt taşkın felaketi değerlendirme raporu, İnşaat Mühendisleri Odası Ankara Şubesi, https://imop.imo.org.tr/resimler/dosya_ekler/40a47e39410932f_ek.pdf, [Accessed 09 November 2021].
  • URL-5, (2023), CORINE land cover, https://land.copernicus.eu/pan-european/corine-land-cover, [Accessed 23 February 2023].
  • URL-6, (2022), Climate change ımpacts and risks, Sixth assessment report IPCC, https://www.ipcc.ch/report/ar6/wg2/downloads/ outreach/IPCC_AR6_WGII_FactSheet_Europe.pdf, [Accessed 1 December 2022].
  • URL-7, (2022), SAGA-GIS module library documentation (version 2.3.0), https://saga-gis.sourceforge.io/saga_tool_doc/2.3.0/ ta_hydrology_23.html, [Accessed 1 September 2022].
  • Vinutha D.N., Janardhana M.R., (2014), Morphometry of the Payaswini Watershed, Coorg District, Karnataka, India, using remote sensing and GIS techniques, International Journal of Innovative Research in Science, Engineering and Technology, 3(5), 516-524.
  • Yılmaz İ., Öztürk D., Kırbaş U., (2017), Çorum ili taşkın tehlikesinin analitik hiyerarşi yöntemi kullanılarak incelenmesi, In TMMOB Harita ve Kadastro Mühendisleri Odası 16. Türkiye Harita Bilimsel ve Teknik Kurultayı, 3-6 Mayıs 2017, Ankara.
  • Yılmaz O.S., (2022), Flood hazard susceptibility areas mapping using Analytical Hierarchical Process (AHP), Frequency Ratio (FR) and AHP-FR ensemble based on Geographic Information Systems (GIS): A case study for Kastamonu, Türkiye, Acta Geophysica, 70, 2747-2769.
  • Waikar M.L., Nilawar A.P., (2014), Morphometric Analysis of a Drainage Basin Using Geographical Information System: A Case study, International Journal of Multidisciplinary and Current Research, 2, 179-184.
  • Withanage N.S., Dayawansa N.D.K., De Silva R.P., (2014), Morphometric analysis of the Gal Oya river basin using spatial data derived from GIS, Tropical Agricultural Research, 26(1), 175-188.

Bozkurt (Kastamonu-Türkiye) Taşkınına Morfometrik Yaklaşım

Yıl 2023, Cilt: 9 Sayı: 2, 216 - 239, 30.07.2023
https://doi.org/10.21324/dacd.1210797

Öz

Bu çalışmada 2021 yılında Kastamonu-Bozkurt’ta meydana gelen taşkın afetinin havza morfometrik parametreleriyle değerlendirilmesi amaçlanmıştır. Çalışmada taşkın etkilerinin en fazla olduğu Ezine Çayı Havzası, komşu havzalarla birlikte değerlendirilmiştir. Bozkurt taşkını, Türkiye tarihinde en fazla yıkıma neden olan taşkınlardan biridir. 10-12 Ağustos 2021 tarihlerinde Kastamonu ve komşu illerde meydana gelen taşkınlar sonucu 82 kişi hayatını kaybetmiştir. Çalışma alanına ait Sayısal Yükseklik Modeli (SYM) topoğrafya haritaları kullanılarak 10*10 m hücre boyutunda oluşturulmuş, ArcGIS-Archydro Modülü ile analize tabi tutulacak havzaların sınırları belirlenmiştir. Bu havzaların; şekil (geometrik), alan ve rölyef morfometrik özellikleri (30 indices) hesaplanmıştır. Morfometrik parametreler arasındaki ilişki, Pearson korelasyon katsayısı ile bulunmuştur. Analiz sonuçları Ezine Çayı Havzası için değerlendirildiğinde; alanı en büyük, havza rölyefi, rölatif rölyef, engebelilik değeri en büyük olan havzadır. Buna bağlı olarak erozyonel faaliyetler fazla ve taşkın tehlikesi yüksektir. Tüm havzalar genel olarak değerlendirildiğinde; havzaların daha çok uzunlamasına bir şekle sahip olduğu, rölyef morfometrisi özelliklerinin taşkın oluşumunu kolaylaştırdığı ortaya çıkmıştır. Tüm havzalar için havza rölyefi, rölatif rölyef, yarılma derecesi, eğim ve ortalama eğim değerleri yüksek olup, hem yüzeysel akışa geçen su miktarı artmış hem de yüzeysel akışın hızı artmıştır. Bu durum taşkın sırasında taşınan malzeme miktarını da artırmıştır. Dere yatağına yakın yapılaşmalar taşkının etki derecesini büyütmüştür. Küresel iklim değişikliğine bağlı olarak çalışma alanı günlük maksimum yağışlardaki değişimin % 5-10 arasında olduğu alana tekabül etmektedir. Bu nedenle taşkınların yaşanmaya devam etmesi olasıdır. Bu nedenle gerekli tedbirler alınırken havzaların iklim özellikleri ile birlikte geometrik (şekil), alansal ve rölyef morfometrik özelliklerinin dikkate alınması önerilmektedir. CORINE arazi örtüsü verisine göre Ezine Çayı Havzası’nda 1990-2018 yılları arasında kentsel alanlar %100’ün üzerinde artmıştır. Sel ve taşkınların afet boyutuna dönüşmesinde bu durumun da etkisi bulunmaktadır. Çalışma alanında doğal bitki örtüsünün korunması ve güçlendirilmesi sel ve taşkınların zarar derecesini azaltacaktır.

Kaynakça

  • Abdelouhed F., Ahmed A., Abdellah A., Yassine B., Mohammed I., (2021), Using GIS and remote sensing for the mapping of potential groundwater zones in fractured environments in the Chaouıa-Morocco area, Remote Sensing Applications: Society and Environment, 23, 100571-100516.
  • Addis A., (2023), GIS – based flood susceptibility mapping using frequency ratio and information value models in upper Abay river basin, Ethiopia, Natural Hazards Research, 3(2), 247-256.
  • Ahad U., Shah A.R., Ali U., (2022), Quantitative estimation of drainage characteristics of the Pohru Catchment, Kashmir valley, India: a remote sensing and GIS based approach, Geocarto International, 37(26), 13839-13859.
  • Alexeevsky N., Magritsky D.V., Koltermann K.P., Krylenko I., Toropov P., (2016), Causes and systematics of inundations of the Krasnodar territory on the Russian Black Sea coast, Natural Hazards Earth System Sciences, 16(6), 1289-1308.
  • Ali S.A., Khan N., (2013), Evaluation of morphometric parameters-A remote sensing and GIS based approach, Open Journal of Modern Hydrology, 3(1), 27229, 20-27.
  • Alqahtani F., Qaddah A.A., (2019), GIS digital mapping of flood hazard in Jeddah–Makkah region from morphometric analysis, Arabian Journal Geosciences, 12, 199, doi: 10.1007/s12517-019-4338-8.
  • Al-Neama S.N., Yang S., Yayha B.M., (2022), Evaluation of surface run-off potential of basins in Nineveh governorate, Iraq based on morphometric analysis, using RS and GIS, Materials Today: Proceedings, 60(3), 1753-1768.
  • Ameri A.A., Pourghasemi H.R., Cerda A., (2018), Erodibility prioritization of sub-watersheds using morphometric parameters analysis and ıts mapping: A comparison among TOPSIS, VIKOR, SAW, and CF multi-criteria decision making models, Science of The Total Environment, 613-614, 1385-1400.
  • Atalay İ., (2018), Uygulamalı hidroğrafya, Meta Basım Matbaacılık Hizmetleri, İzmir, Türkiye, 350ss.
  • Baduna Koçyiğit M., Akay H., (2019), Estimation of flash flood potential of gökırmak basin using morphometric parameters, Proceedings International Science and Engineering Applications Symposium on Hazards 2019, Karabuk, Turkey, ss.150-158.
  • Bali R., Agarwal K.K., Nawaz Ali S., Rastogi S.K., Krishna K., (2012), Drainage morphometry of Himalayan Glacio-fluvial basin, India: hydrologic and neotectonic implications, Environmental Earth Science, 66, 1163-1174.
  • Baltacı H., (2017), Meteorological analysis of flash floods in Artvin (NE Turkey) on 24 August 2015, Natural Hazards Earth System Sciences, 17(7), 1221-1230.
  • Beg A.A.F., (2015), Morphometric toolbox: a new technique in basin morphometric analysis using ArcGIS, Global Journal of Earth Science Engineering, 2(2), 21-30.
  • Bendjoudi H., Hubert P., (2002), The Gravelius compactness coefficient: critical analysis of a shape index for drainage basins, Hydrological Sciences Journal, 47(6), 921-930.
  • Bilgen G., Balcı E., Kalça M.Y., (2022), Kastamonu Bozkurt ilçesinde 11.08.2021 tarihinde meydana gelen sel felaketinin yerinde incelenmesi, Fenerbahçe ÜniversitesiTasarım Mimarlık ve Mühendislik Dergisi, 2(1), 20-35.
  • Bogale A., (2021), Morphometric analysis of a drainage basin using geographical information system in Gilgel Abay watershed, Lake Tana Basin, upper Blue Nile Basin, Ethiopia, Applied Water Science, 11, 122, doi: 10.1007/s13201-021-01447-9.
  • Brahim B., Larbi B., Abdallah D., Driss S., (2016), Utilisation du sig dans l’analyse morphometrique et la prioritisation des sous-bassins versants de oued ınaouene (Nord-Est du maroc), European Scientific Journal, 12(6), 283-306.
  • Chai L., Zhong C.D., Guo F.S., Huang X.S., Wang D.Y., Shao C.J., Chen L.Q., (2022), Evolution stage, spatial and temporal variabilities of granite landforms in the Mount Wugongshan in Jiangxi Province of South China, Journal of Mountain Science, 19, 2743-2757.
  • Charizopoulos N., Mourtzios P., Psilovikos T., Psilovikos A., Karamoutsou L., (2019), Morphometric analysis of the drainage network of Samos Island (northern Aegean Sea): Insights into tectonic control and flood hazards, Comptes Rendus Geoscience, 351(5), 375-383.
  • Choudhari P.P., Nigam G.K., Singh S.K., Thakur S., (2018), Morphometric based prioritization of watershed for groundwater potential of Mula river basin, Maharashtra, India, Geology, Ecology, and Landscapes, 2(4), 256-267.
  • Chauhan N., Paliwal R., Kumar V., Kumar S., Kumar R., (2022), Watershed prioritization in Lower Shivaliks Region of India using ıntegrated principal component and hierarchical cluster analysis techniques: A case of Upper Ghaggar Watershed, Journal of the Indian Society of Remote Sensing, 50(6), 1051-1070.
  • Chorley R.J., Malm D.E.G., Pogorzelski H.A., (1957), A new standard for estimating drainage basin shape, American Journal of Science, 255(2), 138-141.
  • Çanta E.E., Temuçin Kılıçer S., Akıncı H., (2022), FLO-2D ve HEC-RAS Yazılımları ile Ardanuç (Artvin) İlçesindeki Pona Deresi ve Örtülü Deresi’nin Taşkın Yayılım Haritalarının Karşılaştırmalı Üretilmesi, Turkish Journal of Remote Sensing and GIS, 3(1), 50-64.
  • Coşkun S., (2021), Küre Dağlarının Kastamonu iklimi üzerindeki etkileri, Türk Coğrafya Dergisi, 77, 37-52.
  • Davis W.M., (1899), The geographical cycle, The Geographical Journal, 14(5), 481-504.
  • Demircan M., Gürkan H., Eskioğlu O., Arabacı H., Coşkun M., (2017), Climate change projections for Turkey: Three models and two scenarios, Turkish Journal of Water Science and Management, 1(1), 22-43.
  • Demir V., Ülke Keskin A., (2022a), Taşkın tehlike haritalarının oluşturulması (Samsun, Mert Irmağı örneği), Türkiye Coğrafi Bilgi Sistemleri Dergisi, 4(1), 47-54.
  • Demir V., Ülke Keskin A., (2022b), Taşkınların ekonomik zararlarının değerlendirilmesi (Samsun-Mert Irmağı Havzası), Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi, 14(2), 663-678.
  • Demir V., Ülke Keskin A., (2022c), Yeterince akım ölçümü olmayan nehirlerde taşkın debisinin hesaplanması ve taşkın modellemesi (Samsun, Mert Irmağı örneği), Geomatik , 7(2), 149-162.
  • DEMP, (2022), Disaster Statistics, Disaster and Emergency Management Presidency, Ankara.
  • Doğan O.H., Önol B., Turunçoğlu U.U., Kahraman A., (2019), Heavy Precipitation sensitivity of sea surface temperature over the Eastern Blacksea Region: Ensemble simulations of Hopa/Artvin case, Proceedings 9th International Symposium on Atmospheric Sciences (ATMOS 2019), ITU, Istanbul, ss.614-618.
  • Dongare C.U., Deota B.S., Deshpande R.D., (2022), High resolution morphometric studies with special reference to hydrological setup of Khapri watershed, Dangs district, Gujarat, Western India, Geocarto International, 37(13), 3697-3720.
  • Doornkamp J.C., King C.A., (1971), Numerical Analysis in Geomorphology-Introduction, Edward Arnold, London, UK, 372ss.
  • Erdede B., Öztürk D., (2016), Kızılırmak havzasının taşkın potansiyelinin çizgisel, alansal ve rölyef morfometrik indisler kullanılarak değerlendirilmesi, 6. Uzaktan Algılama-CBS Sempozyumu (UZAL-CBS 2016), Adana, Türkiye, pp.392-399.
  • Ertürk E., Kaya N., (2019), Taşkın tehlike alanlarının oluşturulması: Trabzon ili Vakfıkebir ilçesi Kirazlı Deresi örneği, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 31(2), 337-344.
  • ESRI, (2022), ArcGIS Earth desktop apps, Environmental Systems Research Institute, https://www.esri.com/en-us/arcgis/products/arcgis-earth/downloads, [Accessed 09 November 2021].
  • Faniran A., (1968), The index of drainage Intensity-a provisional new drainage factor, Australian Journal of Science, 31(9), 328-330.
  • Faye C., Ndiaye M., (2021), Use of geospatial tools in morphometric analysis and prioritisation of sub-catchments of the Soungrougrou (Casamance Basın), Quaestıones Geographicae, Sciendo, 40(3), 65-84.
  • GDM, (2010), 1/25.000 scale standart topographic maps, (Map sheets: E31c1,c2, E32 d1, E32 a1, a2, a4, E32 b1, b2, b3, b4), General Directorate of Mapping, Ankara, Türkiye.
  • GDWM, (2014), Guidelines for the preparation of flood risk management plans, General Directorate of Water Management, http://taskinyonetimi.suyonetimi.gov.tr/taskin/Files/Outputs/TRYP_Kilavuzlar.pdf, [Accessed 11 May 2019].
  • Gravelius H., (1914), Grundrifi der Gesamten Gewcisserkunde, Band I: Flufikunde (Compendium of Hydrology, vol. I. Rivers), Goschen, Berlin, German.
  • Gülbaz S., (2019), Sayısal modeller ile taşkın yayılım haritasının oluşturulması ve risk altında olan alanların belirlenmesi: Türkköse Deresi örneği, Doğal Afetler ve Çevre Dergisi, 5(2), 335-349.
  • Hamdan A.M., (2020), Hydro-Morphometric analysis using geospatial technology: A case study of Wadi Gabgaba and Wadi Allaqi Watersheds, Southern Egypt-Northern Sudan, Journal of Asian Scientific Research, 10(3), 190-212.
  • Halis O., Gönençgil B., Acar Z., (2022), An atmospheric approach to the flood disaster in the Western Black Sea region (Turkey) on 10-12 August 2021, Natural Hazards and Earth System Sciences, doi: 10.5194/nhess-2022-185.
  • Horton R.E., (1932), Drainage-basin characteristics Eos, transactions american geophysical union, 13(1), 350-361.
  • Horton R.E., (1945), Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology, Geological society of America bulletin, 56(3), 275-370.
  • Islam A., Deb Barman S., (2020), Drainage basin morphometry and evaluating its role on flood-inducing capacity of tributary basins of Mayurakshi River, India, SN Applied Science, 2, 1087, doi: 10.1007/s42452-020-2979-6.
  • Jackson A., (2012), Discharge & hydrographs, Geography AS Notes, https:// geographyas.info/rivers/discharge-and-hydrographs/, (Accessed 10 December 2022).
  • Javed A., Khanday M.Y., Rizwan A., (2009), Prioritization of sub-watersheds based on morphometric and land use analysis using remote sensing and gıs techniques, Journal of the Indian Society of Remote Sensing, 37, 261-274.
  • Jose C., Thomas J., Prasannakumar V., Reghunath R., (2019), BaDAM toolbox: A GIS-Based approach for automated drainage basin morphometry, Journal of the Indian Society of Remote Sensing, 47, 46-478.
  • Jothimani M., Abebe A., Berhanu G., (2022), Application of remote sensing, GIS, and drainage morphometric analysis in groundwater potential assessment for sustainable development in Iyenda River Catchment, Konso Zone, Rift Valley, Southern Ethiopia, IOP Conf. Series: Earth and Environmental Science, 982, 012032, doi: 10.1088/1755-1315/982/1/012032.
  • Kaliraj S., Chandrasekar N., Magesh N.S., (2015), Morphometric analysis of the River Thamirabarani sub-basin in Kanyakumari District, South west coast of Tamil Nadu, India, using remote sensing and GIS, Environmental Earth Sciences, 73, 7375-7401.
  • Kapochkina A., Kapochkin B., Kucherenko N., Uchytel I., (2015), Floods and droughts as a result of deformability of the geological environment, Meteorology Hydrology and Water Managegement, 3(2), 3-7.
  • Keller E.A., Pinter N., (2002), Active tectonics: Earthquakes, uplift, and landscape, Prentice-Hall, New Jersey, NY, USA, 362ss.
  • Khalifa A., Bashir B., Alsalman A., Bachir H., (2022), Morphometric-Hydro Characterization of the Coastal Line between El-Qussier and Marsa-Alam, Egypt: Preliminary Flood Risk Signatures, Applied Sciences, 12(12), 6264, doi: 10.3390/app12126264.
  • Kılıç B., Gülgen F., Çelen M., Öncel M.S., Oruç H.N., Vural S., (2022), Morphometric analysis of Saz-Çayırova Drainage Basin using geographic ınformation systems and different digital elevation models, International Journal of Environment and Geoinformatics (IJEGEO), 9(2), 177-186.
  • Korshenko E., Zhurbas V., Osadchiev A., Belyakova P., (2020), Fate of river-borne floating litter during the flooding event in the northeastern part of the Black Sea in October 2018, Marine Pollution Bulletin 160, 111678, doi: 10.1016/j.marpolbul.2020.111678.
  • Kühni A., Pfiffner O.A., (2001), The relief of the Swiss Alps and adjacent areas and its relation to lithology and structure: Topographic analysis from a 250-m DEM, Geomorphology, 41(4), 285-307.
  • Kumar S., Chaudhary B.S., (2016), GIS applications in morphometric analysis of Koshalya-Jhajhara Watershed in northwestern India, Journal of the Geological Society of India, 88, 585-592.
  • López-Ramos A., Medrano-Barboza J.P., Martínez-Acosta L., Acuña G.J., Remolina López J.F., López-Lambraño A.A., (2022), Assessment of morphometric parameters as the basis for hydrological ınferences in water resource management: A case study from the Sinú River Basin in Colombia, ISPRS International Journal of Geo-Information, 11(9), 459, doi:10.3390/ijgi11090459.
  • Mahala A., (2020), The significance of morphometric analysis to understand the hydrological and morphological characteristics in two different morpho-climatic settings, Applied Water Science, 10, 33, doi: 10.1007/s13201-019-1118-2.
  • Makhamreh Z., Al-Hawary M., Odeh S., (2020), Assessment of morphometric characteristics of Wadi Al-Shumar catchment in Jordan, Open Journal of Geology, 10(2), 155-170.
  • Malik M.I., AL-Shammary S.H., AL-Hamzawy H.M., (2016), Morphometric analysis of Al-Chabab River Basin East of Iraq using remote sensing and gis techniques, International Journal of Scientific Engineering and Research (IJSER), 4(3), 53-58.
  • Mani A., Kumari M., Badola R., (2022), Morphometric Analysis of Suswa River Basin Using Geospatial Techniques, Engineering Proceedings, 27(1), 65, doi: 10.3390/ecsa-9-13225.
  • Marchi L., Dalla Fontana G., (2005), GIS morphometric indicators for the analysis of sediment dynamics in mountain basins, Environmental Geology, 48, 218-228.
  • Melton M.A., (1957), An analysis of the relations among elements of climate, surface properties, and geomorphology, Columbia University, Department of Geology, Technical Report No: ONR-11, New York, NY, USA, 118ss.
  • Melton M.A., (1965), The geomorphic and paleoclimatic significance of alluvial deposits in southern Arizona, The Journal of geology, 73(1), 1-38.
  • Meshram S.G., Sharma S.K., (2017), Prioritization of watershed through morphometric parameters: a PCA-based approach, Applied Water Science, 7, 1505-1519.
  • Miller V.C., (1953), A quantitative geomorphologic study of drainage basin characteristics in the clinch mountain area, Virginia and Tennessee, The Journal of Geology, 65(1), 271-300.
  • Nautiyal, M. D., (1994), Morphometric analysis of a drainage basin using aerial photographs: A case study of Khairkuli basin, district Dehradun, U.P. Journal of the Indian Society of Remote Sensing, 22, 251-261.
  • Nir D., (1957), The ratio of relative and absolute altitudes of Mt. Carmel: A contribution to the problem of relief analysis and relief classification, Geographical Review, 47(4), 564-569.
  • Nooka Ratnam K., Srivastava Y.K., Venkateswara Rao V., Amminedu E., Murthy K.S.R., (2005), Check dam positioning by prioritization of micro-watersheds using SYI model and morphometric analysis-Remote sensing and GIS perspective, Journal of the Indian Society of Remote Sensing, 33, 25-38.
  • Oğraş S., Önen F., (2019), Dicle Nehri’nin taşkın analizinin HEC-RAS programı ile yapılması, Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 10(3), 1087-1098.
  • Oyedotun T.D.T., (2022), Quantitative assessment of the drainage morphometric characteristics of Chaohu Lake Basin from SRTM DEM Data: a GIS-based approach, Geology Ecology Landscape, 6(3), 174-187.
  • Pareta K., Pareta U., (2012), Quantitative geomorphological analysis of a Watershed of Ravi River Basin, H.P. India, International Journal of Remote Sensing and GIS, 1(1), 47-62.
  • Pathare J.A., Pathare A.R., (2020), Prioritization of micro-watershed based on morphometric analysis and runoff studies in upper Darna basin, Maharashtra, India, Modeling Earth Systems and Environment, 6, 1123-1130.
  • Perez-Pena J.V., Azanon J.M., Azor A., (2009), CalHypso: An ArcGIS extension to calculate hypsometric curves and their statistical moments, Applications to drainage basin analysis in SE Spain, Computers & Geosciences, 35(6), 1214-1223.
  • Rai P.K., Mishra V.N., Mohan K., (2017a), A study of morphometric evaluation of the Son basin, India using geospatial approach, Remote Sensing Applications: Society and Environment, 7, 9-20.
  • Rai P.K., Mohan K., Mishra S., Ahmad A., Mishra V.N., (2017b), A GIS-based approach in drainage morphometric analysis of Kanhar River Basin, India, Applied Water Science, 7, 217-232.
  • Reddy G.P.O., Maji A.K., Gajbhiye K.S., (2004), Drainage morphometry and its influence on landform characteristics in a basaltic terrain, Central India–a remote sensing and GISf approach, International Journal of Applied Earth Observation and Geoinformation, 6(1), 1-16.
  • Roy S., Das S., Sengupta S., (2022), Predicting terrain erosion susceptibility from drainage basin morphometry using ALOS‑PALSAR DEM: analysis from PCA‑weighted AHP approach in a river system of Eastern India, Environment, Development and Sustainability, doi: 10.1007/s10668-022-02450-z.
  • Said S., Siddique R., Shakeel M., (2018), Morphometric analysis and sub-watersheds prioritization of Nagmati River watershed, Kutch District, Gujarat using GIS based approach, Journal of Water and Land Development, 39(1), 131-139.
  • Sakthivel R., Raj N.J., Sivasankar V., Akhila P., Omine K., (2019), Geo-spatial technique-based approach on drainage morphometric analysis at Kalrayan Hills, Tamil Nadu, India, Applied Water Science, 9, 1-18, doi: 10.1007/s13201-019-0899-7.
  • Sarkar D., Mondal P., (2020), Flood vulnerability mapping using frequency ratio (FR) model: a case study on Kulik river basin, Indo-Bangladesh Barind region, Applied Water Science, 10(1), 1-13, doi: 10.1007/s13201-019-1102-x.
  • Schumm S.A., (1956), Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey, Geological Society of America Bulletin, 67(5), 597-646.
  • Shaikh M., Yadav S., Manekar V., (2021), Accuracy assessment of different open-source digital elevation model through morphometric analysis for a semi-arid river basin in the western part of India, Journal of Geovisualization and Spatial Analysis, 5, 1-21.
  • Shankar V.S., Purti N., Ganta N., Mandal K. K., Singh R.P., Kaviarasan T., Satyakeerthy T.R., Jacob S., (2022), Assessment of the hydrological and erosive status of South Andaman’s watersheds using drainage morphometric studies and climatic water balance model, Geocarto International, 37(26), 13391-13418.
  • Sharma S., Mahajan A.K., (2020), GIS-based sub-watershed prioritization through morphometric analysis in the outer Himalayan region of India, Applied Water Science, 10, 1-11, doi: 10.1007/s13201-020-01243-x.
  • Shekar P.R., Mathew A., (2022), Morphometric analysis for prioritizing sub-watersheds of Murredu River basin, Telangana State, India, using a geographical information system, Journal of Engineering and Applied Science, 69, 1-30, doi: 10.1186/s44147-022-00094-4.
  • Smith G.H., (1935), The Relative Relief of Ohio, Geographical Review, 25(2), 272-284.
  • Singh S., Dubey A., (1994), Geoenvironmental planning of watersheds in India, Chugh Publications, Allahabad, India, 199ss.
  • Singh V.G., Singh S.K., (2022), Analysis of geo-morphometric and topo-hydrological indices using COP-DEM: a case study of Betwa River Basin, Central India, Geology, Ecology, and Landscapes, doi: 10.1080/24749508.2022.2097376.
  • Sinha J., Harshavardhana B.G., Sinha A.K., Das Mahapathra S., (2023), A review on remote sensing and GIS technique-based morphometric analysis, Flexible Electronics for Electric Vehicles’in İçinde, (Dwivedi S., Singh S., Tiwari M., Shrivastava A., Ed.), Springer, Singapore, ss. 333- 342.
  • Soni S., (2017), Assessment of morphometric characteristics of Chakrar watershed in Madhya Pradesh India using geospatial technique, Applied Water Science, 7, 2089-2102.
  • Sözer B., Kocaman S., Nefeslioğlu H.A., Fırat O., Gökçeoğlu C., (2019), Değiştirilmiş AHP (M-AHP) yöntemi kullanılarak Ankara için taşkın duyarlılık haritası üretimi, Harita Dergisi, 162, 12-24.
  • Sreedevi P.D., Subrahmanyam K., Ahmed S., (2005), The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain, Environmental Geology, 47, 412-420.
  • Strahler A.N., (1952), Hypsometric (area-altitude) analysis of erosional topography, Geological society of America bulletin, 63(11), 1117-1142.
  • Strahler A.N., (1957), Quantitative analysis of watershed geomorphology, Eos, Transactions American Geophysical Union, 38(6), 913-920.
  • Strahler A.N., (1964), Quantitative geomorphology of drainage basins and channel net work, Handbook of Applied Hydrology’nin İçinde, (Chow V., Ed.), McGraw Hill, New York, USA, ss.39-76.
  • Sukristiyanti S., Maria R., Lestiana H., (2018), Watershed-based Morphometric Analysis: A Review, IOP Conference Series: Earth and Environmental Science, 118, 012028, doi:10.1088/1755-1315/118/1/012028.
  • Sunkar M., Tonbul S., (2010), Batman’da 31 Ekim-1 Kasım 2006 tarihinde yaşanan taşkının nedenleri, II. Ulusal Taşkın Sempozyumu, 22-24 Mart, Afyonkarahisar, ss. 349-361.
  • Şener M., (2011), Determination of basin characteristics by using geographical ınformation Systems (GIS), Journal of Environmental Protection and Ecology, 12(4), 1941-1947.
  • Şener M., Arslanoğlu M.C., (2023), Morphometric analysis in Google Earth Engine: An online interactive web-based application for global-scale analysis, Environmental Modelling & Software, 162, 105640, doi: 10.1016/j.envsoft.2023.105640.
  • TECCWRP, (2016), The Effect of Climate Change on Water Resources Project Report (TECCWRP), The Ministry of Forestry and Water Affairs, General Directorate of Water Management (GDWM), June 2016, Ankara, Türkiye.
  • Thapliyal A., Panwar A., Kimothi S., (2017), Prioritization based on morphometric analysis in Alaknanda Basin, Global Journal of Science Frontier Research H Environment and Earth Science, 17(13), 29-34.
  • Thomas J., Joseph S., Thrivikramaji K.P., (2010), Morphometric aspects of a small tropical mountain river system, the southern Western Ghats, India, International Journal of Digital Earth, 3(2), 135-156.
  • Thomas J., Joseph S., Thrivikramji K.P., Abe G., Kannan N., (2012), Morphometrical analysis of two tropical mountain river basins of contrasting environmental settings, the southern Western Ghats, India, Environmental Earth Sciences, 66, 2353-2366.
  • TSMS, (2022), Temperature and Precipitation Data of Kastamonu, Bozkurt and Abana meteorological stations, Turkish State Meteorological Service (TSMS), Ankara, Türkiye.
  • Turoğlu H., (1997), İyidere havzasının hidrografik özelliklerine sayısal yaklaşım, Türk Coğrafya Dergisi, 32, 355-364. Uğuz M.F., Sevin M., Duru M., (2002), 1/500.000 ölçekli Türkiye jeoloji haritası Sinop paftası, Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.
  • URL-1, (2021), Sel felaketi yaşayan Bozkurt'un sokakları yeniden sular altında, https://www.ntv.com.tr/galeri/turkiye/sel-felaketi-yasayan-bozkurtun-sokaklari-yeniden-sular-altinda,EHD39e_cKk2ZZHgd4wmVvA/A-i0HvP6r0GwZSPc7cgbwA, [Accessed 1 September 2021].
  • URL-2, (2022), Kastamonu hava durumu: İnebolu ve Bozkurt'ta sağanak, https://www.ntv.com.tr/turkiye/kastamonu-hava-durumu-inebolu-ve-bozkurtta-saganak-nedeniyle-sel-taskinlari-yasaniyor,N3mUyex0h0WNz4iAPwYqrg, [Accessed 1 August 2022].
  • URL-3, (2022), Bakan Kurum Kastamonu basın açıklaması, T.C. Çevre, Şehircilik ve İlklim Değişikliği Bakanlığı, https://www.csb.gov.tr/bakan-kurum-kastamonu-basin-aciklamasi-bakanlik-faaliyetleri-34155, [Accessed 08 November 2022].
  • URL-4, (2021), 11 Ağustos 2021 Bozkurt taşkın felaketi değerlendirme raporu, İnşaat Mühendisleri Odası Ankara Şubesi, https://imop.imo.org.tr/resimler/dosya_ekler/40a47e39410932f_ek.pdf, [Accessed 09 November 2021].
  • URL-5, (2023), CORINE land cover, https://land.copernicus.eu/pan-european/corine-land-cover, [Accessed 23 February 2023].
  • URL-6, (2022), Climate change ımpacts and risks, Sixth assessment report IPCC, https://www.ipcc.ch/report/ar6/wg2/downloads/ outreach/IPCC_AR6_WGII_FactSheet_Europe.pdf, [Accessed 1 December 2022].
  • URL-7, (2022), SAGA-GIS module library documentation (version 2.3.0), https://saga-gis.sourceforge.io/saga_tool_doc/2.3.0/ ta_hydrology_23.html, [Accessed 1 September 2022].
  • Vinutha D.N., Janardhana M.R., (2014), Morphometry of the Payaswini Watershed, Coorg District, Karnataka, India, using remote sensing and GIS techniques, International Journal of Innovative Research in Science, Engineering and Technology, 3(5), 516-524.
  • Yılmaz İ., Öztürk D., Kırbaş U., (2017), Çorum ili taşkın tehlikesinin analitik hiyerarşi yöntemi kullanılarak incelenmesi, In TMMOB Harita ve Kadastro Mühendisleri Odası 16. Türkiye Harita Bilimsel ve Teknik Kurultayı, 3-6 Mayıs 2017, Ankara.
  • Yılmaz O.S., (2022), Flood hazard susceptibility areas mapping using Analytical Hierarchical Process (AHP), Frequency Ratio (FR) and AHP-FR ensemble based on Geographic Information Systems (GIS): A case study for Kastamonu, Türkiye, Acta Geophysica, 70, 2747-2769.
  • Waikar M.L., Nilawar A.P., (2014), Morphometric Analysis of a Drainage Basin Using Geographical Information System: A Case study, International Journal of Multidisciplinary and Current Research, 2, 179-184.
  • Withanage N.S., Dayawansa N.D.K., De Silva R.P., (2014), Morphometric analysis of the Gal Oya river basin using spatial data derived from GIS, Tropical Agricultural Research, 26(1), 175-188.
Toplam 121 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer), Fiziksel Coğrafya ve Çevre Jeolojisi (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Vedat Avci 0000-0003-1439-3098

Ömer Ünsal 0000-0002-4500-2021

Yayımlanma Tarihi 30 Temmuz 2023
Gönderilme Tarihi 27 Kasım 2022
Kabul Tarihi 30 Mayıs 2023
Yayımlandığı Sayı Yıl 2023Cilt: 9 Sayı: 2

Kaynak Göster

APA Avci, V., & Ünsal, Ö. (2023). A Morphometric Approach to Bozkurt (Kastamonu-Türkiye) Flood. Doğal Afetler Ve Çevre Dergisi, 9(2), 216-239. https://doi.org/10.21324/dacd.1210797
AMA Avci V, Ünsal Ö. A Morphometric Approach to Bozkurt (Kastamonu-Türkiye) Flood. Doğ Afet Çev Derg. Temmuz 2023;9(2):216-239. doi:10.21324/dacd.1210797
Chicago Avci, Vedat, ve Ömer Ünsal. “A Morphometric Approach to Bozkurt (Kastamonu-Türkiye) Flood”. Doğal Afetler Ve Çevre Dergisi 9, sy. 2 (Temmuz 2023): 216-39. https://doi.org/10.21324/dacd.1210797.
EndNote Avci V, Ünsal Ö (01 Temmuz 2023) A Morphometric Approach to Bozkurt (Kastamonu-Türkiye) Flood. Doğal Afetler ve Çevre Dergisi 9 2 216–239.
IEEE V. Avci ve Ö. Ünsal, “A Morphometric Approach to Bozkurt (Kastamonu-Türkiye) Flood”, Doğ Afet Çev Derg, c. 9, sy. 2, ss. 216–239, 2023, doi: 10.21324/dacd.1210797.
ISNAD Avci, Vedat - Ünsal, Ömer. “A Morphometric Approach to Bozkurt (Kastamonu-Türkiye) Flood”. Doğal Afetler ve Çevre Dergisi 9/2 (Temmuz 2023), 216-239. https://doi.org/10.21324/dacd.1210797.
JAMA Avci V, Ünsal Ö. A Morphometric Approach to Bozkurt (Kastamonu-Türkiye) Flood. Doğ Afet Çev Derg. 2023;9:216–239.
MLA Avci, Vedat ve Ömer Ünsal. “A Morphometric Approach to Bozkurt (Kastamonu-Türkiye) Flood”. Doğal Afetler Ve Çevre Dergisi, c. 9, sy. 2, 2023, ss. 216-39, doi:10.21324/dacd.1210797.
Vancouver Avci V, Ünsal Ö. A Morphometric Approach to Bozkurt (Kastamonu-Türkiye) Flood. Doğ Afet Çev Derg. 2023;9(2):216-39.

Creative Commons License
Doğal Afetler ve Çevre Dergisi, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License ile lisanlanmıştır.