Research Article
BibTex RIS Cite

Biosorption of Cu2+ onto Biyological Waste Nitrification Organisms

Year 2020, Volume: 6 Issue: 1, 181 - 195, 12.01.2020
https://doi.org/10.21324/dacd.612505

Abstract



The biosorption of Cu2+ ions from
aqueous solutions onto the dry waste nitrification organisms (DWNO) which were
enriched in the laboratory was investigated in batch experimental system with
respect to the temperature, initial Cu2+ concentrations, pH, and
biosorbent doses.
Considering the R2 value, qexp
and qcal, t
he adsorption
equilibrium was well described by the Langmuir isotherm model which
is suggesting that the Cu2+ ions were adsorbed onto the DWNO in a monolayer. The value of qe increased with increasing
the temperature while also increases the release of organic matter and NH4
-N from the DWNO. The highest sorption of Cu2+
onto DWNO was determined at the initial pH value and temperature of 5.0 and
55°C, respectively. The results confirming that the biosorption reaction of Cu2+
on the DWNO was thought to be endothermic. A comparison of the kinetic models such as pseudo first and second
-order kinetics, intraparticle diffusion, and Elovich on the sorption rate
demonstrated that the system was best described by
the pseudo second-order kinetic model. The value of ΔG° was decreasing with increasing temperature. It indicates that the
adsorption process leads to an increase in Gibbs energy. The negative ΔG
° value means the Cu2+sorption onto the DWNO is feasible.

References

  • Abdelfattah I., Ismail A.A., Sayed F.A., Almedolab A., Aboelghait K.M., (2016), Biosorption of heavy metals ions in real industrial wastewater using peanut husk as efficient and cost effective adsorbent, Environmental Nanotechnology Monitoring and Management, 6(2016), 176-183.
  • Ahmad R., Kumar R., Haseeb S., (2010), Adsorption of Cu2+ from aqueous solution onto iron oxide coated eggshell powder: Evaluation of equilibrium, isotherms, kinetics, and regeneration capacity, Arabian Journal of Chemistry, 5(3), 353-359.
  • Aksoy Ö., (2012), Sulu çözeltilerden bazı boyar maddelerin ve bakır metalinin uzaklaştırılmasında yeni bir adsorplayıcı olarak nar posasının değerlendirilmesi, Yüksek Lisans Tezi, Dicle Üniversitesi Fen Bilimleri Enstitüsü, Diyarbakır.
  • Aksu, Z., Acikel, U.A., (1999), Single–staged bioseparation process for simultaneous removal of copper (II) and chromium (VI) by using C. vulgaris, Process Biochemistry, 34(6-7), 589-599.
  • Aksu Z., Donmez G., (2001), Comparison of copper (II) biosorptive properties of live and treated Candida sp., Journal of Environmental Science and Health A, 36(3), 367-381.
  • Al-Homaidan A.A., Al-Houri H.J., Al-Hazzani A.A., Elgaaly, G., Moubayed N. M.S., (2014), Biosorption of copper ions from aqueous solutions by Spirulina platensis biomass, Arabian Journal of Chemistry, 7(1), 57-62.
  • Al-Qodah Z., (2006), Biosorption of heavy metal ions from aqueous solutions by activated sludge, Desalination, 196(1-3), 164-176.
  • APHA, AWWA, WPCF, (1995), Standard Methods for the Examination of water and wastewater, 19th ed., American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC, USA.
  • Aslan S., Bozkurt Z., Tekeli, A.N., (2007), Removal of Cu (II), Ni (II), Cd (II) and Cr (VI) ions from aqueous solutions by biosorption processes, Journal of Engineering and Natural, Sciences, Sigma, 25(2), 209-222.
  • Aslan S., Gurbuz B., (2011), Influence of operational parameters and low nickel concentrations on partial nitrification in a submerged biofilter, Applied Biochemistry and Biotechnology, 165(7-8), 1543-1555.
  • Aslan S., Simsek E., (2012), Influence of salinity on partial nitrification in a submerged biofilter, Bioresource Technology, 118(2012), 24-29.
  • Aslan S., Sozudogru O., (2017), Individual and combined effects of nickel and copper on nitrification organisms, Ecological Engineering, 99(2017), 126-133.
  • Aslan S., Topcu U.S., (2015), Adsorption of nickel and copper from water by waste nitrification organisms, ISITES2015–3rd International Symposium on Innovative Technologies in Engineering and Science, pp: 1955-1963, Valencia, Spain.
  • Aslan S., Polat A., Topcu U.S., (2015), Assessment of the adsorption kinetics, equilibrium and thermodynamics for the potential removal of Ni2+ from aqueous solution using waste eggshell, Journal of Environmental Engineering and Landscape Management, 23(3), 221-229.
  • Aslan S., Yıldız S., Ozturk M., (2016), Sorption of heavy metals on biosludge, European Scientific Journal, Special Edition, April, 118-123.
  • Aslan S., Yıldız S., Ozturk M., (2018), Biosorption of Cu2+ and Ni2+ ions from aqueous solutions using waste dreid activated sludge Biomass, Polish Journal of Chemical Technology, 20(3), 20-28.
  • Ata A., Nalcaci O.O., Ovez B., (2012), Macro algae Gracilaria verrucosa as a biosorbent: A study of sorption mechanisms, Algal Research, 1(2), 194-204.
  • Azouaou N., Sadaoui Z., Djaafri A., Mokaddem H., (2010), Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics, Journal of Hazardous Materials, 184(1), 126-134.
  • Benaïssa H., Elouchdi M.A., (2011), Biosorption of copper (II) ions from synthetic aqueous solutions by drying bed activated sludge, Journal of Hazardous Materials, 194, 69-78.
  • Bermúdez Y.G., Rico I.L.R., Bermúdez O.G., Guibal E., (2011), Nickel biosorption using Gracilaria caudata and Sargassum muticum, Chemical Engineering Journal, 166(1), 122-131.
  • Chassary P., Vincent T., Guibal E., (2004), Metal anion sorption on chitosan and derivative materials: a strategy for polymer modifi cation and optimum use, Reactive Functional Polymers, 60(2004), 137-149.
  • Chojnacka K., (2005), Biosorption of Cr (III) ions by eggshells, Journal of Hazardous Materials, 121(1-3), 167-173.
  • Chowdhury Md. R.I., Mulligan C.N., (2011), Biosorption of arsenic from contaminated water by anaerobic biomass, Journal of Hazardous Materials, 190(1-3), 486-492.
  • Cırık Y., Büyükateş Y., Merdivan M., Ak. İ., Göksan T., (2012), Cu (II) ve Co (II) iyonlarının Spirulina Platensis (Cyanophyceae) ile biyosorpsiyon özelliklerinin incelenmesi, Biyoloji Bilimleri Araştırma Dergisi, 5(1), 7-12.
  • Cojocaru C., Diaconu M., Cretescu I., Savi J., Vasi V., (2009), Biosorption of copper (II) ions from aqua solutions using dried yeast biomass, Colloid Surface A: Physicochemical and Engineering Aspects, 335(1-3), 181-188.
  • Comte S., Guibaud G., Baudu, M., (2008), Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values, Journal of Hazardous Materials, 151(1), 185-193.
  • Crittenden J.C., Trussell R.R., Hand D.W., Howe K.J., Tchobanoglous G., (2005), Water Treatment: Priciples and Design, 2nd Edition, John Wiley and Son, Inc., ss.1947.
  • Dağdelen S., (2012), Remazol Billant Blue R boyasının sulu çözeltiden uzaklaştırılması için zeytin posasının (prina)adsorbent olarak kullanımının araştırılması, Yüksek Lisan Tezi, Kilis 7 Aralık Üniversitesi, Fen Bilimleri Enstitüsü, Kilis.
  • Dede Ö.T., (2018), Atık sulardan metallerin gideriminde fındık kabuğunun adsorbent olarak kullanılması: Adsorpsiyon mekanizması ve kinetik modelleme, Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 232-242.
  • Demirbaş A., (2008), Heavy metal adsorption onto agro–based waste materials: A review, Journal of Hazardous Materials, 157(2-3), 220-229.
  • Demirbaş E., Dizge E., Sulak M.T., Kobya M., (2009), Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon, Chemical Engineering Journal, 148(2-3), 480-487.
  • Donat R., Akdogan A., Erdem E., Cetisli H., (2005), Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions, Journal of Colloid and Interface Science, 286(1), 43-52.
  • Eynur S.Y., (2016), XAD–7 reçinesi üzerindeki Kongo kırmızısının adsorpsiyon izotermlerinin incelenmesi, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • Fawzy M., Nasr M., Adel S., Nagy H., Helmi S., (2016), Environmental approach and artificial intelligence for Ni (II) and Cd (II) biosorption from aqueous solution using Typha domingensis biomass, Ecological Engineering, 95, 743-752.
  • Ghasemi Z., Seif A., Ahmadi T.S., Zargar B., Rashidi F., Rouzbahani G. M., (2012), Thermodynamic and kinetic studies for the adsorption of Hg (II) by nano-TiO2 from aqueous solution, Advanced Powder Technology, 23(2), 148-156.
  • Ghazy S., El-S. El-Asmy A.A.H, El–Nokrashy A.M., (2011), Batch removal of nickel by eggshell as a low cost sorbent, International Journal of Industrial Chemistry (IJIC), 2(4), 242-252.
  • Göksungur Y., Üren S., Güvenç U., (2003), Biosorption of copper ions by caustic treated waste baker’s yeast biomass, Turkish Journal of Biology, 27(2003), 23-29.
  • Guibaud G., Comte S., Bordas F., Baudu M., (2005), Metal removal from single and multimetallic equimolar sysrems by extracellular polymers extracted from activated sludge as evaluated by SMDE polarography, Process Biochemistry, 40(2), 661-668.
  • Gupta V.K., Rastogi A., Saini V.K., Jain N., (2006), Biosorption of copper(II) from aqueous solutions by Spirogyra species, J Colloid Interface Science, 296(1), 59-63.
  • Guzman J., Saucedo I., Revilla J., Navarro R., Guibal E., (2003), Copper sorption by chitosan in the presence of citrate ions: infl uence of metal speciation on sorption mechanism and uptake capacities, International Journal of Biological Macromolecules, 33(1), 57-65.
  • Güler U.A., (2010), Farklı biyosorbentler üzerine Cu(II), Ni(II) ve metilen mavisi biyosorpsiyonunu kesikli ve sürekli sistemlerde incelenmesi, Doktora Tezi, Cumhuriyet Üniversitesi Fen Bilimleri Enstitüsü, Sivas.
  • Güler U.A., Sarıoğlu M., (2013), Single and binary biosorption of Cu (II), Ni (II) and methylen blue by raw and pretreated Spirogyra sp.: Equilibrium and kinetic modeling, Journal of Environmental Chemical Engineering, 1(3), 369-377.
  • Hammaini A., Gonzalez F., Ballester A., Blazquez M.L., Munoz J.A., (2007), Biosorption of heavy metals by activated sludge and their desorption characteristics, Journal of Environmental Management, 84(4), 419-426.
  • Huang L., Sun Y., Yang T., Li L., (2011), Adsorption behavior of Ni (II) on lotus stalks derived active carbon by phosphoric acid activation, Desalination, 268(1-3), 12-19.
  • Jianlong W., Yi Q., Horan N., Stentiford E., (2000), Bioadsorption of pentachlorophenol (PCP) from aqueous solution by activated sludge biomass, Bioresource Technology, 75(2), 157-161.
  • Kalavathy H.M., Miranda L.R., (2010), Moringa oleifera–A solid phase extractant for the removal of copper, nickel and zinc from aqueous solutions, Chemical Engineering Journal, 158(2), 188-199.
  • Kalyani G., Rao B.G., Saradhi B.V., Kumar Y.P., (2009), Equilibrium and kinetic studies on biosorption of zinc onto gallus domesticus shell powder, ARPN Journal of Engineering and Applied Sciences, 4(1), 39-49.
  • Karakagh R.M., Chorom M., Motomedi H., Kalkhajeh Y.K., Oustan S., (2012), Biosorption of Cd and Ni by inactivated bacteria isolated from agricultural soil treated with sewage sludge, Ecohydrology & Hydrobiology, 12(3), 191-198.
  • Kızılkaya B., Tekinay A.A., Dilgin Y., (2010), Adsorption and removal of Cu (II) ions from aqueous solution using pretreated fish bones, Desalination, 264(1-2), 37-47.
  • Kovacevic Z.F., Sipos L., Briski F., (2000), Biosorption of chromium, copper, nickel and zinc ions onto fungal pellets of Aspergillus niger 405 from aqueous solutions, Food Technology and Biotechnolgy, 38(3), 211-216.
  • Krishnan K.A., Sreejalekshmi K.G., Baiju R.S., (2011), Nickel (II) adsorption onto biomass based activated carbon obtained from sugarcane bagasse pith, Bioresource Technology, 102(22),10239-10247.
  • Kumar P.S., Kirthika K., (2009), Equilibrium and kinetic study of adsorption on nickel from aqueous solution onto bael tree leaf powder, Journal of Engineering Science and Technology, 4(4), 351-363.
  • Kumar P.S., Ramalingam S., Kiruph S.D., Murugesan A., Vidhyadevi T., Sivanesan S., (2011), Adsorption behavior of nickel(II) onto cashew nutsShell: Equilibrium, thermodynamics, kinetics, mechanism and process design, Chemical Engineering Journal, 167(1), 122-131.
  • Kumar Y. P., King P.., Prasad V.S.R.K., (2006), Removal of copper from aqueous solution using Ulva fasciata sp.-A marine green alga, Journal of Hazardous Materials, 137(1), 367-373.
  • Kuyucak N., Volesky B., (1989), Accumulation of cobalt by marine alga, Biotechnology Bioengineering, 33(7), 809-814.
  • Lee L.Y., Ong S.L., Ng H.Y., Hu J.Y., Koh Y.N., (2008), Simultaneous ammonium–nitrogen and copper removal, and copper recovery using nitrifying biofilm from the Ultra–Compact Biofilm Reactor, Bioresource Technology, 99(14), 6614-6620.
  • Liao D., Zheng W., Li X., Yang O., Yue X., Guo L., Zeng G., (2010), Removal of Lead (II) from Aqueous Solitiouns Using Carbonate Hydroxyapatite Extracted from Eggshell Waste, Journal of Hazardous Materials, 177(1-3), 126-130.
  • Liu D, Tao Y, Li K, Yu J., (2012), Influence of the presence of three typical surfactants on the adsorption of nickel (II) to aerobic activated sludge, Bioresource Technology, 126(2012), 56-63.
  • Liu Y., Fang H.H.P., (2003), Influences of extracellular polymericsubstances (EPS) on flocculation, settling, and dewatering of activated sludge, Critical Reviews in Environmental Science and Technology, 33(3), 237-273.
  • Lokeshwari N., Joshi K., (2009), Biosorption of heavy metal (Chromium) using biomass, Global Journal of Environmental Research, 3(1), 29-35.
  • Malkoç E., Nuhoğlu Y., (2006), Palamut meşesi (Quercus ithaburensis) atığı ile sabit yataklı kolonda Cr (IV) biyosorpsiyonu, DEÜ Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 8(2), 31-45.
  • Malkoç E., Nuhoğlu Y., (2007), Determination of kinetic and equilibrium parameters of the batch adsorption of Cr (VI) onto waste a corn of quercus ithaburensis, Chemical Engineering and Processing, 46, 1020-1029.
  • Malkoc E., Nuhoglu Y., (2009), Removal of Ni (II) ions from aqueous solutions using waste of tea factory: Adsorption on a fixed–bed column, Journal of Hazardous Materials, 135(1-3), 328-336.
  • McKay G., (1995), Use of adsorbents for the removal of pollutants from wastewaters, Chemical Rubber Company, Boca Raton, FL.
  • Moreira V.R., Lebron Y.A.R., Freire S.J., Santos L.V.S., Palladino F., Jacob R.S., (2019), Biosorption of copper ions from aqueous solution using Chlorella pyrenoidosa: Optimization, equilibrium and kinetics studies, Microchemical Journal, 145(2019), 119-129.
  • Muraleedharan T.R., Tyengar L., Venkobachar C., (1995), Screening of tropical woodrotting mushrooms for copper biosorption, Applied Environmental Microbiology, 61(9), 3507-3508.
  • Ngah W.W., Endud C.S., Mayanar R., (2002), Removal of copper (II) from aqueous solution onto chitosan and cross–linked chitosan beads, Reactive and Functional Polymers, 50(2), 181-190.
  • Nollet H., Roels M., Lutgen P., Van der Meeren P., Verstraete W., (2003), Removal of PCBs from wastewater using fly ash, Chemosphere, 53(6), 655-665.
  • Ong S.A, Toorisaka E., Hirata M, Hano T., (2010), Adsorption and toxicity of heavy metals on activated sludge, ScienceAsia, 36(2010), 204-209.
  • Ozdemir G., Ozturk T., Ceyhan N., Isler R., Cosar T., (2003), Heavy metal biosorption by biomass of Ochrobactrum anthropi producing exopolysaccharide in activated sludge, Bioresource Technology, 90(1), 71-74.
  • Pagnanelli F., Mainelli S., Bornoroni L., Dionisi D., Toro L., (2009), Mechanisms of heavy–metal removal by activated sludge, Chemosphere, 75(8), 1028-1034.
  • Pamukoğlu M.Y., Kargi F., (2006), Removal of copper (II) ions from aqueous medium by biosorption onto powdered waste sludge, Process Biochemitry, 41(5), 1047-1054.
  • Park H.J., Jeong S.W., Yang J.K., Kim B.G., Lee S.M., (2007), Removal of heavy metals using waste eggshell, Journal of Sciences, 19(12), 1436-1441.
  • Pehlivan E., Ozkan A.M., Dinc S., Parlayici S., (2009), Adsorption of Cu2+ and Pb2+ ion on dolomite powder, Journal of Hazardous Materials, 167(1-3), 1044-1049.
  • Polat A., Aslan S., (2014), Kinetic and isotherm study of cupper adsorption from aqueous solution using waste eggshell, Journal of Environmental Engineering and Landscape Management, 22(2), 132-140.
  • Rafatullah M., Sulaiman O., Hashim R., Ahmad A., (2009), Adsorption of copper (II), Nickel (II) and Lead (II) ions from aqueous solutions by meranti sawdust, Journal of Hazardous Materials, 170(2-3), 969-977.
  • Rao P.R., Bhargavi C., (2013), Studies on biosorption of heavy metals using pretreated biomass of fungal species, International Journal of Chemistry and Chemical Engineering, 3(3), 171-180.
  • Remenarova L., Pipiska M., Hornik M., Rozloznik M., Jozef A., Lesny J., (2012), Biosorption of cadmium and zinc by activated sludge from single and binary solutions: Mechanism, equilibrium and experimental design study, Journal of the Taiwan Institute of Chemical Engineers, 43(3), 433-443.
  • Rittmann B.E., McCarty P.L., (2001), Environmental Biotechnology: Principles and Applications, International Edition, ss.754.
  • Rocha C.G., Zaia D.A.M., da Silva Alfaya R.V., da Silva Alfaya A.A., (2009), Use of rice straw as biosorbent for removal of Cu (II), Zn (II), Cd (II) and Hg (II) ions in industrial effluents, Journal of Hazardous Materials, 166(1), 383-388.
  • Sag Y., Kutsal T., (1996), The selective biosorption of chromium (VI) and copper (II) ions from binary metal mixtures by R. arrhizus, Process Biochemistry, 31(6), 561-72.
  • Say R., Denizli A., Arıca M.Y., (2001), Biosorption of cadmium (II), lead (II) and copper (II) with the flamentous fungus Phanerochaete chrysosporium, Bioresource Technology, 76(1), 67-70.
  • Seco A., Marzal P., Gabaldon C., Ferrer J., (1997), Adsorption of heavy metals from aqueous solutions onto activated carbon in single Cu and Ni systems and in binary Cu–Ni, Cu–Cd and Cu–Zn systems, Journal of Chemical Technology and Biotechnology, 68(1), 23-30.
  • Shah J., Jan M R., Haq A., Zeeshan M., (2012), Equilibrium, kinetic and thermodynamic studies for sorption of Ni (II) from aqueous solution using formaldehyde treated waste tea leaves, Jurnal of Saudi Chemical Society, 19(3), 301-310.
  • Silva A.F., Antunes S., Saunders A., Freitas F., Vieira A., Galinha C.F., Nielsen P.H., Crespo M.T.B., Carvalho G., (2016), Impact of sludge retention time on the fine composition of the microbial community and extracellular polymeric substances in a membrane bioreactor, Applied Microbiol Biotechnology, 100(19), 8507-8521.
  • Sljivic M., Smiciklas I., Plecas I., Mitric M., (2009), The influence of equilibration conditions and hydroxyapatite physico–chemical properties onto retention of Cu2+ ion, Chemical Engineering Journal, 148, 80-88.
  • Vilar V.J., Botelho C.M., Loureiro J.M., Boaventura R.A., (2008), Biosorption of copper by marine algae Gelidium and algalcomposite material in a packed bed column, Bioresource Technology, 99(13), 5830-5838.
  • Wei D., Zhang K., Wang S., Sun B., Wu N., Xu W., Du B., Wei Q., (2017), Characterization of dissolved organic matter released from activated sludge and aerobic granular sludge biosorption processes for heavy metal treatment via a fluorescence approach, International Biodeterioration Biodegradation, 124(2017), 326-333.
  • Yeddou N., Bensmaili A., (2007), Equilibrium and kinetic modelling of iron adsorption by eggshells in a batch system: effect of temperature, Desalination, 206(1-3), 127–134.
  • Yu B., Zhang Y, Shukla A., Shukla S.S., Dorris K.L., (2000), The removal of heavy metal from aqueous solutions by sawdust adsorption removal of copper, Journal of Hazardous Materials, 80(1-3), 33-42.
  • Zhang Z.Q., Zhou Y., Zhang J., Xia S.Q., (2014), Copper(II)adsorption by the extracellular polymeric substance extractedfrom waste activated sludge after short–time aerobic digestion, Environmental Science Pollution Research International, 21(3), 2132-2140.
  • Zhao X., Song L., Zhang Z, Wang R., Fu J., (2011), Adsorption investigation of MA-DTPA chelating resin for Ni (II) and Cu (II) using experimental and DFT methods, Journal of Molecular Structure, 986(1-3), 68-74.
  • Zhou Y., Zhang Z., Zhang J., Xia S., (2016), New insight into adsorption characteristics and mechanisms of the biosorbent from waste activated sludge for heavy metals, Journal of Environmetal Science, 45(2016), 248-256.
  • Zou W., Han R., Chen Z., Jinghua Z., Shi, J., (2006), Kinetic study adsorption of Cu (II) and Pb (II) from aqueous solutions using manganese oxide coated zeolite in batch mode, Colloids and Surfaces, A. Physicochemical Engineering Aspects, 279(1-3), 238-246.
  • Zouboulis A.I., Matis K.A., Loukidou M., Sebesta F., (2003), Metal biosorption by PAN-immobilizedfungal biomass in simulated wastewaters, Colloids Surface A, 212, 185-195.
  • Zouboulis A.I., Rousou E.G., Matis K.A., Hancock I.C., (1999), Removal of toxic metals from aqueous mixtures, Part 1: Biosorption Journal of Chemical Technology and Biotechnology, 74(5), 429-36.

Biyolojik Atık Nitrifikasyon Organizmasına Cu+2 Biyosorpsiyonu

Year 2020, Volume: 6 Issue: 1, 181 - 195, 12.01.2020
https://doi.org/10.21324/dacd.612505

Abstract



Laboratuvarda geliştirilen kuru atık biyolojik nitrifikasyon organizmasına (KANO),
Cu+2 iyonlarının biyosorpsiyonu, sıcaklık,
başlangıç
Cu+2 derişimi, pH ve biyosorbent
dozuna göre
kesikli ünitelerde
araştırılmıştır. Deneysel çalışmalar ile elde edilen R2, qden
ve qhes değerleri göz önüne alındığında, adsorpsiyon eşitliği, Cu+2
iyonlarının KANO’ya biyosorpsiyonu, tek kademe olarak belirtilen en iyi, Langmuir
izotermi tarafından tanımlanmaktadır. Deneysel çalışmalarda belirlenen qe
değeri, çözelti sıcaklığı arttıkça yükselirken, KANO yapısından sıcaklık ve pH’a
bağlı olarak çözeltiye salınan organik madde ve NH4
-N artmaktadır. KANO’ya en yüksek Cu+2 biyosorpsiyonu, başlangıç pH ve sıcaklığı olan 5,0 ve 55 °C’de olduğu belirlenmiştir.
Deneysel sonuçlar, KANO’ya, Cu
+2 biyosorpsiyonunun endotermik bir reaksiyon olduğunu
göstermektedir. Sorpsiyon hızı için kinetik modeller, yalancı I. derece ve yalancı
II. derece, partikül içi difüzyon, Elovich karşılaştırıldığında, adsorpsiyonun
en iyi yalancı II. derece kinetik model tarafından tanımlandığını
göstermektedir.
ΔG° değeri sıcaklık arttıkça
azalmaktadır. Bu durum adsorpsiyon sürecinin Gibbs enerjisinin artmasını
sağlamaktadır. Negatif ΔG
° değeri, KANO üzerine Cu+2 biyosorpsiyonunun uygulanabilir olduğu
anlamına gelmektedir. 

References

  • Abdelfattah I., Ismail A.A., Sayed F.A., Almedolab A., Aboelghait K.M., (2016), Biosorption of heavy metals ions in real industrial wastewater using peanut husk as efficient and cost effective adsorbent, Environmental Nanotechnology Monitoring and Management, 6(2016), 176-183.
  • Ahmad R., Kumar R., Haseeb S., (2010), Adsorption of Cu2+ from aqueous solution onto iron oxide coated eggshell powder: Evaluation of equilibrium, isotherms, kinetics, and regeneration capacity, Arabian Journal of Chemistry, 5(3), 353-359.
  • Aksoy Ö., (2012), Sulu çözeltilerden bazı boyar maddelerin ve bakır metalinin uzaklaştırılmasında yeni bir adsorplayıcı olarak nar posasının değerlendirilmesi, Yüksek Lisans Tezi, Dicle Üniversitesi Fen Bilimleri Enstitüsü, Diyarbakır.
  • Aksu, Z., Acikel, U.A., (1999), Single–staged bioseparation process for simultaneous removal of copper (II) and chromium (VI) by using C. vulgaris, Process Biochemistry, 34(6-7), 589-599.
  • Aksu Z., Donmez G., (2001), Comparison of copper (II) biosorptive properties of live and treated Candida sp., Journal of Environmental Science and Health A, 36(3), 367-381.
  • Al-Homaidan A.A., Al-Houri H.J., Al-Hazzani A.A., Elgaaly, G., Moubayed N. M.S., (2014), Biosorption of copper ions from aqueous solutions by Spirulina platensis biomass, Arabian Journal of Chemistry, 7(1), 57-62.
  • Al-Qodah Z., (2006), Biosorption of heavy metal ions from aqueous solutions by activated sludge, Desalination, 196(1-3), 164-176.
  • APHA, AWWA, WPCF, (1995), Standard Methods for the Examination of water and wastewater, 19th ed., American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC, USA.
  • Aslan S., Bozkurt Z., Tekeli, A.N., (2007), Removal of Cu (II), Ni (II), Cd (II) and Cr (VI) ions from aqueous solutions by biosorption processes, Journal of Engineering and Natural, Sciences, Sigma, 25(2), 209-222.
  • Aslan S., Gurbuz B., (2011), Influence of operational parameters and low nickel concentrations on partial nitrification in a submerged biofilter, Applied Biochemistry and Biotechnology, 165(7-8), 1543-1555.
  • Aslan S., Simsek E., (2012), Influence of salinity on partial nitrification in a submerged biofilter, Bioresource Technology, 118(2012), 24-29.
  • Aslan S., Sozudogru O., (2017), Individual and combined effects of nickel and copper on nitrification organisms, Ecological Engineering, 99(2017), 126-133.
  • Aslan S., Topcu U.S., (2015), Adsorption of nickel and copper from water by waste nitrification organisms, ISITES2015–3rd International Symposium on Innovative Technologies in Engineering and Science, pp: 1955-1963, Valencia, Spain.
  • Aslan S., Polat A., Topcu U.S., (2015), Assessment of the adsorption kinetics, equilibrium and thermodynamics for the potential removal of Ni2+ from aqueous solution using waste eggshell, Journal of Environmental Engineering and Landscape Management, 23(3), 221-229.
  • Aslan S., Yıldız S., Ozturk M., (2016), Sorption of heavy metals on biosludge, European Scientific Journal, Special Edition, April, 118-123.
  • Aslan S., Yıldız S., Ozturk M., (2018), Biosorption of Cu2+ and Ni2+ ions from aqueous solutions using waste dreid activated sludge Biomass, Polish Journal of Chemical Technology, 20(3), 20-28.
  • Ata A., Nalcaci O.O., Ovez B., (2012), Macro algae Gracilaria verrucosa as a biosorbent: A study of sorption mechanisms, Algal Research, 1(2), 194-204.
  • Azouaou N., Sadaoui Z., Djaafri A., Mokaddem H., (2010), Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics, Journal of Hazardous Materials, 184(1), 126-134.
  • Benaïssa H., Elouchdi M.A., (2011), Biosorption of copper (II) ions from synthetic aqueous solutions by drying bed activated sludge, Journal of Hazardous Materials, 194, 69-78.
  • Bermúdez Y.G., Rico I.L.R., Bermúdez O.G., Guibal E., (2011), Nickel biosorption using Gracilaria caudata and Sargassum muticum, Chemical Engineering Journal, 166(1), 122-131.
  • Chassary P., Vincent T., Guibal E., (2004), Metal anion sorption on chitosan and derivative materials: a strategy for polymer modifi cation and optimum use, Reactive Functional Polymers, 60(2004), 137-149.
  • Chojnacka K., (2005), Biosorption of Cr (III) ions by eggshells, Journal of Hazardous Materials, 121(1-3), 167-173.
  • Chowdhury Md. R.I., Mulligan C.N., (2011), Biosorption of arsenic from contaminated water by anaerobic biomass, Journal of Hazardous Materials, 190(1-3), 486-492.
  • Cırık Y., Büyükateş Y., Merdivan M., Ak. İ., Göksan T., (2012), Cu (II) ve Co (II) iyonlarının Spirulina Platensis (Cyanophyceae) ile biyosorpsiyon özelliklerinin incelenmesi, Biyoloji Bilimleri Araştırma Dergisi, 5(1), 7-12.
  • Cojocaru C., Diaconu M., Cretescu I., Savi J., Vasi V., (2009), Biosorption of copper (II) ions from aqua solutions using dried yeast biomass, Colloid Surface A: Physicochemical and Engineering Aspects, 335(1-3), 181-188.
  • Comte S., Guibaud G., Baudu, M., (2008), Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values, Journal of Hazardous Materials, 151(1), 185-193.
  • Crittenden J.C., Trussell R.R., Hand D.W., Howe K.J., Tchobanoglous G., (2005), Water Treatment: Priciples and Design, 2nd Edition, John Wiley and Son, Inc., ss.1947.
  • Dağdelen S., (2012), Remazol Billant Blue R boyasının sulu çözeltiden uzaklaştırılması için zeytin posasının (prina)adsorbent olarak kullanımının araştırılması, Yüksek Lisan Tezi, Kilis 7 Aralık Üniversitesi, Fen Bilimleri Enstitüsü, Kilis.
  • Dede Ö.T., (2018), Atık sulardan metallerin gideriminde fındık kabuğunun adsorbent olarak kullanılması: Adsorpsiyon mekanizması ve kinetik modelleme, Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 232-242.
  • Demirbaş A., (2008), Heavy metal adsorption onto agro–based waste materials: A review, Journal of Hazardous Materials, 157(2-3), 220-229.
  • Demirbaş E., Dizge E., Sulak M.T., Kobya M., (2009), Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon, Chemical Engineering Journal, 148(2-3), 480-487.
  • Donat R., Akdogan A., Erdem E., Cetisli H., (2005), Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions, Journal of Colloid and Interface Science, 286(1), 43-52.
  • Eynur S.Y., (2016), XAD–7 reçinesi üzerindeki Kongo kırmızısının adsorpsiyon izotermlerinin incelenmesi, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • Fawzy M., Nasr M., Adel S., Nagy H., Helmi S., (2016), Environmental approach and artificial intelligence for Ni (II) and Cd (II) biosorption from aqueous solution using Typha domingensis biomass, Ecological Engineering, 95, 743-752.
  • Ghasemi Z., Seif A., Ahmadi T.S., Zargar B., Rashidi F., Rouzbahani G. M., (2012), Thermodynamic and kinetic studies for the adsorption of Hg (II) by nano-TiO2 from aqueous solution, Advanced Powder Technology, 23(2), 148-156.
  • Ghazy S., El-S. El-Asmy A.A.H, El–Nokrashy A.M., (2011), Batch removal of nickel by eggshell as a low cost sorbent, International Journal of Industrial Chemistry (IJIC), 2(4), 242-252.
  • Göksungur Y., Üren S., Güvenç U., (2003), Biosorption of copper ions by caustic treated waste baker’s yeast biomass, Turkish Journal of Biology, 27(2003), 23-29.
  • Guibaud G., Comte S., Bordas F., Baudu M., (2005), Metal removal from single and multimetallic equimolar sysrems by extracellular polymers extracted from activated sludge as evaluated by SMDE polarography, Process Biochemistry, 40(2), 661-668.
  • Gupta V.K., Rastogi A., Saini V.K., Jain N., (2006), Biosorption of copper(II) from aqueous solutions by Spirogyra species, J Colloid Interface Science, 296(1), 59-63.
  • Guzman J., Saucedo I., Revilla J., Navarro R., Guibal E., (2003), Copper sorption by chitosan in the presence of citrate ions: infl uence of metal speciation on sorption mechanism and uptake capacities, International Journal of Biological Macromolecules, 33(1), 57-65.
  • Güler U.A., (2010), Farklı biyosorbentler üzerine Cu(II), Ni(II) ve metilen mavisi biyosorpsiyonunu kesikli ve sürekli sistemlerde incelenmesi, Doktora Tezi, Cumhuriyet Üniversitesi Fen Bilimleri Enstitüsü, Sivas.
  • Güler U.A., Sarıoğlu M., (2013), Single and binary biosorption of Cu (II), Ni (II) and methylen blue by raw and pretreated Spirogyra sp.: Equilibrium and kinetic modeling, Journal of Environmental Chemical Engineering, 1(3), 369-377.
  • Hammaini A., Gonzalez F., Ballester A., Blazquez M.L., Munoz J.A., (2007), Biosorption of heavy metals by activated sludge and their desorption characteristics, Journal of Environmental Management, 84(4), 419-426.
  • Huang L., Sun Y., Yang T., Li L., (2011), Adsorption behavior of Ni (II) on lotus stalks derived active carbon by phosphoric acid activation, Desalination, 268(1-3), 12-19.
  • Jianlong W., Yi Q., Horan N., Stentiford E., (2000), Bioadsorption of pentachlorophenol (PCP) from aqueous solution by activated sludge biomass, Bioresource Technology, 75(2), 157-161.
  • Kalavathy H.M., Miranda L.R., (2010), Moringa oleifera–A solid phase extractant for the removal of copper, nickel and zinc from aqueous solutions, Chemical Engineering Journal, 158(2), 188-199.
  • Kalyani G., Rao B.G., Saradhi B.V., Kumar Y.P., (2009), Equilibrium and kinetic studies on biosorption of zinc onto gallus domesticus shell powder, ARPN Journal of Engineering and Applied Sciences, 4(1), 39-49.
  • Karakagh R.M., Chorom M., Motomedi H., Kalkhajeh Y.K., Oustan S., (2012), Biosorption of Cd and Ni by inactivated bacteria isolated from agricultural soil treated with sewage sludge, Ecohydrology & Hydrobiology, 12(3), 191-198.
  • Kızılkaya B., Tekinay A.A., Dilgin Y., (2010), Adsorption and removal of Cu (II) ions from aqueous solution using pretreated fish bones, Desalination, 264(1-2), 37-47.
  • Kovacevic Z.F., Sipos L., Briski F., (2000), Biosorption of chromium, copper, nickel and zinc ions onto fungal pellets of Aspergillus niger 405 from aqueous solutions, Food Technology and Biotechnolgy, 38(3), 211-216.
  • Krishnan K.A., Sreejalekshmi K.G., Baiju R.S., (2011), Nickel (II) adsorption onto biomass based activated carbon obtained from sugarcane bagasse pith, Bioresource Technology, 102(22),10239-10247.
  • Kumar P.S., Kirthika K., (2009), Equilibrium and kinetic study of adsorption on nickel from aqueous solution onto bael tree leaf powder, Journal of Engineering Science and Technology, 4(4), 351-363.
  • Kumar P.S., Ramalingam S., Kiruph S.D., Murugesan A., Vidhyadevi T., Sivanesan S., (2011), Adsorption behavior of nickel(II) onto cashew nutsShell: Equilibrium, thermodynamics, kinetics, mechanism and process design, Chemical Engineering Journal, 167(1), 122-131.
  • Kumar Y. P., King P.., Prasad V.S.R.K., (2006), Removal of copper from aqueous solution using Ulva fasciata sp.-A marine green alga, Journal of Hazardous Materials, 137(1), 367-373.
  • Kuyucak N., Volesky B., (1989), Accumulation of cobalt by marine alga, Biotechnology Bioengineering, 33(7), 809-814.
  • Lee L.Y., Ong S.L., Ng H.Y., Hu J.Y., Koh Y.N., (2008), Simultaneous ammonium–nitrogen and copper removal, and copper recovery using nitrifying biofilm from the Ultra–Compact Biofilm Reactor, Bioresource Technology, 99(14), 6614-6620.
  • Liao D., Zheng W., Li X., Yang O., Yue X., Guo L., Zeng G., (2010), Removal of Lead (II) from Aqueous Solitiouns Using Carbonate Hydroxyapatite Extracted from Eggshell Waste, Journal of Hazardous Materials, 177(1-3), 126-130.
  • Liu D, Tao Y, Li K, Yu J., (2012), Influence of the presence of three typical surfactants on the adsorption of nickel (II) to aerobic activated sludge, Bioresource Technology, 126(2012), 56-63.
  • Liu Y., Fang H.H.P., (2003), Influences of extracellular polymericsubstances (EPS) on flocculation, settling, and dewatering of activated sludge, Critical Reviews in Environmental Science and Technology, 33(3), 237-273.
  • Lokeshwari N., Joshi K., (2009), Biosorption of heavy metal (Chromium) using biomass, Global Journal of Environmental Research, 3(1), 29-35.
  • Malkoç E., Nuhoğlu Y., (2006), Palamut meşesi (Quercus ithaburensis) atığı ile sabit yataklı kolonda Cr (IV) biyosorpsiyonu, DEÜ Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 8(2), 31-45.
  • Malkoç E., Nuhoğlu Y., (2007), Determination of kinetic and equilibrium parameters of the batch adsorption of Cr (VI) onto waste a corn of quercus ithaburensis, Chemical Engineering and Processing, 46, 1020-1029.
  • Malkoc E., Nuhoglu Y., (2009), Removal of Ni (II) ions from aqueous solutions using waste of tea factory: Adsorption on a fixed–bed column, Journal of Hazardous Materials, 135(1-3), 328-336.
  • McKay G., (1995), Use of adsorbents for the removal of pollutants from wastewaters, Chemical Rubber Company, Boca Raton, FL.
  • Moreira V.R., Lebron Y.A.R., Freire S.J., Santos L.V.S., Palladino F., Jacob R.S., (2019), Biosorption of copper ions from aqueous solution using Chlorella pyrenoidosa: Optimization, equilibrium and kinetics studies, Microchemical Journal, 145(2019), 119-129.
  • Muraleedharan T.R., Tyengar L., Venkobachar C., (1995), Screening of tropical woodrotting mushrooms for copper biosorption, Applied Environmental Microbiology, 61(9), 3507-3508.
  • Ngah W.W., Endud C.S., Mayanar R., (2002), Removal of copper (II) from aqueous solution onto chitosan and cross–linked chitosan beads, Reactive and Functional Polymers, 50(2), 181-190.
  • Nollet H., Roels M., Lutgen P., Van der Meeren P., Verstraete W., (2003), Removal of PCBs from wastewater using fly ash, Chemosphere, 53(6), 655-665.
  • Ong S.A, Toorisaka E., Hirata M, Hano T., (2010), Adsorption and toxicity of heavy metals on activated sludge, ScienceAsia, 36(2010), 204-209.
  • Ozdemir G., Ozturk T., Ceyhan N., Isler R., Cosar T., (2003), Heavy metal biosorption by biomass of Ochrobactrum anthropi producing exopolysaccharide in activated sludge, Bioresource Technology, 90(1), 71-74.
  • Pagnanelli F., Mainelli S., Bornoroni L., Dionisi D., Toro L., (2009), Mechanisms of heavy–metal removal by activated sludge, Chemosphere, 75(8), 1028-1034.
  • Pamukoğlu M.Y., Kargi F., (2006), Removal of copper (II) ions from aqueous medium by biosorption onto powdered waste sludge, Process Biochemitry, 41(5), 1047-1054.
  • Park H.J., Jeong S.W., Yang J.K., Kim B.G., Lee S.M., (2007), Removal of heavy metals using waste eggshell, Journal of Sciences, 19(12), 1436-1441.
  • Pehlivan E., Ozkan A.M., Dinc S., Parlayici S., (2009), Adsorption of Cu2+ and Pb2+ ion on dolomite powder, Journal of Hazardous Materials, 167(1-3), 1044-1049.
  • Polat A., Aslan S., (2014), Kinetic and isotherm study of cupper adsorption from aqueous solution using waste eggshell, Journal of Environmental Engineering and Landscape Management, 22(2), 132-140.
  • Rafatullah M., Sulaiman O., Hashim R., Ahmad A., (2009), Adsorption of copper (II), Nickel (II) and Lead (II) ions from aqueous solutions by meranti sawdust, Journal of Hazardous Materials, 170(2-3), 969-977.
  • Rao P.R., Bhargavi C., (2013), Studies on biosorption of heavy metals using pretreated biomass of fungal species, International Journal of Chemistry and Chemical Engineering, 3(3), 171-180.
  • Remenarova L., Pipiska M., Hornik M., Rozloznik M., Jozef A., Lesny J., (2012), Biosorption of cadmium and zinc by activated sludge from single and binary solutions: Mechanism, equilibrium and experimental design study, Journal of the Taiwan Institute of Chemical Engineers, 43(3), 433-443.
  • Rittmann B.E., McCarty P.L., (2001), Environmental Biotechnology: Principles and Applications, International Edition, ss.754.
  • Rocha C.G., Zaia D.A.M., da Silva Alfaya R.V., da Silva Alfaya A.A., (2009), Use of rice straw as biosorbent for removal of Cu (II), Zn (II), Cd (II) and Hg (II) ions in industrial effluents, Journal of Hazardous Materials, 166(1), 383-388.
  • Sag Y., Kutsal T., (1996), The selective biosorption of chromium (VI) and copper (II) ions from binary metal mixtures by R. arrhizus, Process Biochemistry, 31(6), 561-72.
  • Say R., Denizli A., Arıca M.Y., (2001), Biosorption of cadmium (II), lead (II) and copper (II) with the flamentous fungus Phanerochaete chrysosporium, Bioresource Technology, 76(1), 67-70.
  • Seco A., Marzal P., Gabaldon C., Ferrer J., (1997), Adsorption of heavy metals from aqueous solutions onto activated carbon in single Cu and Ni systems and in binary Cu–Ni, Cu–Cd and Cu–Zn systems, Journal of Chemical Technology and Biotechnology, 68(1), 23-30.
  • Shah J., Jan M R., Haq A., Zeeshan M., (2012), Equilibrium, kinetic and thermodynamic studies for sorption of Ni (II) from aqueous solution using formaldehyde treated waste tea leaves, Jurnal of Saudi Chemical Society, 19(3), 301-310.
  • Silva A.F., Antunes S., Saunders A., Freitas F., Vieira A., Galinha C.F., Nielsen P.H., Crespo M.T.B., Carvalho G., (2016), Impact of sludge retention time on the fine composition of the microbial community and extracellular polymeric substances in a membrane bioreactor, Applied Microbiol Biotechnology, 100(19), 8507-8521.
  • Sljivic M., Smiciklas I., Plecas I., Mitric M., (2009), The influence of equilibration conditions and hydroxyapatite physico–chemical properties onto retention of Cu2+ ion, Chemical Engineering Journal, 148, 80-88.
  • Vilar V.J., Botelho C.M., Loureiro J.M., Boaventura R.A., (2008), Biosorption of copper by marine algae Gelidium and algalcomposite material in a packed bed column, Bioresource Technology, 99(13), 5830-5838.
  • Wei D., Zhang K., Wang S., Sun B., Wu N., Xu W., Du B., Wei Q., (2017), Characterization of dissolved organic matter released from activated sludge and aerobic granular sludge biosorption processes for heavy metal treatment via a fluorescence approach, International Biodeterioration Biodegradation, 124(2017), 326-333.
  • Yeddou N., Bensmaili A., (2007), Equilibrium and kinetic modelling of iron adsorption by eggshells in a batch system: effect of temperature, Desalination, 206(1-3), 127–134.
  • Yu B., Zhang Y, Shukla A., Shukla S.S., Dorris K.L., (2000), The removal of heavy metal from aqueous solutions by sawdust adsorption removal of copper, Journal of Hazardous Materials, 80(1-3), 33-42.
  • Zhang Z.Q., Zhou Y., Zhang J., Xia S.Q., (2014), Copper(II)adsorption by the extracellular polymeric substance extractedfrom waste activated sludge after short–time aerobic digestion, Environmental Science Pollution Research International, 21(3), 2132-2140.
  • Zhao X., Song L., Zhang Z, Wang R., Fu J., (2011), Adsorption investigation of MA-DTPA chelating resin for Ni (II) and Cu (II) using experimental and DFT methods, Journal of Molecular Structure, 986(1-3), 68-74.
  • Zhou Y., Zhang Z., Zhang J., Xia S., (2016), New insight into adsorption characteristics and mechanisms of the biosorbent from waste activated sludge for heavy metals, Journal of Environmetal Science, 45(2016), 248-256.
  • Zou W., Han R., Chen Z., Jinghua Z., Shi, J., (2006), Kinetic study adsorption of Cu (II) and Pb (II) from aqueous solutions using manganese oxide coated zeolite in batch mode, Colloids and Surfaces, A. Physicochemical Engineering Aspects, 279(1-3), 238-246.
  • Zouboulis A.I., Matis K.A., Loukidou M., Sebesta F., (2003), Metal biosorption by PAN-immobilizedfungal biomass in simulated wastewaters, Colloids Surface A, 212, 185-195.
  • Zouboulis A.I., Rousou E.G., Matis K.A., Hancock I.C., (1999), Removal of toxic metals from aqueous mixtures, Part 1: Biosorption Journal of Chemical Technology and Biotechnology, 74(5), 429-36.
There are 96 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Research Articles
Authors

Şükrü Aslan 0000-0001-8735-8029

Uğur Şavaş Topçu 0000-0002-3985-2425

Publication Date January 12, 2020
Submission Date August 28, 2019
Acceptance Date December 5, 2019
Published in Issue Year 2020Volume: 6 Issue: 1

Cite

APA Aslan, Ş., & Topçu, U. Ş. (2020). Biyolojik Atık Nitrifikasyon Organizmasına Cu+2 Biyosorpsiyonu. Doğal Afetler Ve Çevre Dergisi, 6(1), 181-195. https://doi.org/10.21324/dacd.612505
AMA Aslan Ş, Topçu UŞ. Biyolojik Atık Nitrifikasyon Organizmasına Cu+2 Biyosorpsiyonu. J Nat Haz Environ. January 2020;6(1):181-195. doi:10.21324/dacd.612505
Chicago Aslan, Şükrü, and Uğur Şavaş Topçu. “Biyolojik Atık Nitrifikasyon Organizmasına Cu+2 Biyosorpsiyonu”. Doğal Afetler Ve Çevre Dergisi 6, no. 1 (January 2020): 181-95. https://doi.org/10.21324/dacd.612505.
EndNote Aslan Ş, Topçu UŞ (January 1, 2020) Biyolojik Atık Nitrifikasyon Organizmasına Cu+2 Biyosorpsiyonu. Doğal Afetler ve Çevre Dergisi 6 1 181–195.
IEEE Ş. Aslan and U. Ş. Topçu, “Biyolojik Atık Nitrifikasyon Organizmasına Cu+2 Biyosorpsiyonu”, J Nat Haz Environ, vol. 6, no. 1, pp. 181–195, 2020, doi: 10.21324/dacd.612505.
ISNAD Aslan, Şükrü - Topçu, Uğur Şavaş. “Biyolojik Atık Nitrifikasyon Organizmasına Cu+2 Biyosorpsiyonu”. Doğal Afetler ve Çevre Dergisi 6/1 (January 2020), 181-195. https://doi.org/10.21324/dacd.612505.
JAMA Aslan Ş, Topçu UŞ. Biyolojik Atık Nitrifikasyon Organizmasına Cu+2 Biyosorpsiyonu. J Nat Haz Environ. 2020;6:181–195.
MLA Aslan, Şükrü and Uğur Şavaş Topçu. “Biyolojik Atık Nitrifikasyon Organizmasına Cu+2 Biyosorpsiyonu”. Doğal Afetler Ve Çevre Dergisi, vol. 6, no. 1, 2020, pp. 181-95, doi:10.21324/dacd.612505.
Vancouver Aslan Ş, Topçu UŞ. Biyolojik Atık Nitrifikasyon Organizmasına Cu+2 Biyosorpsiyonu. J Nat Haz Environ. 2020;6(1):181-95.