Research Article
BibTex RIS Cite

Monitoring Damage and Air Pollutant Parameters after Forest Fire: A Case Study of Çanakkale Fire

Year 2024, Volume: 10 Issue: 1, 103 - 112, 28.01.2024
https://doi.org/10.21324/dacd.1355463

Abstract

Forests are an indispensable part of the Earth in terms of their biodiversity and contributions. Fires are one of the most important factors affecting forests, which cover one third of our planet. Forest fires are among the most destructive natural disasters on Earth and are also a very important source of gases and aerosols. The monitoring of forest fires is extremely important for disaster monitoring and prevention. Geographic Information Systems (GIS) and remote sensing, which have been widely used in fire monitoring in recent years, are prominent methods in terms of data collection, analysis and interpretation. This study focuses on the analysis of the forest fire that occurred in Çanakkale on August 22, 2023 and lasted for 3 days with the help of Sentinel-2 and 5P remote sensing images and GIS. The results of the analysis showed that the total area affected by the fire was 4191.93 hectares (ha) and covered a wide range of land cover/use classes. In particular, forests and agricultural lands were the most severely affected in this region. The aerosol index and nitrogen dioxide (NO2) air pollution parameters, which indicate the concentration of pollutants emitted into the atmosphere after the fire, were monitored and their concentrations determined from satellite imagery. The highest NO2 concentration recorded was 0.02624702 mol/m² on August 24, the last day of the fire. The total amount of NO2 emitted into the atmosphere for three days was determined to be 0.06020184 mol/m².

References

  • Butt, E. W., Conibear, L., Reddington, C. L., Darbyshire, E., Morgan, W. T., Coe, H., Artaxo, P., Brito, J., Knote, C., & Spracklen, D. V. (2020). Large air quality and human health impacts due to amazon forest and vegetation fires. Environmental Research Communications, 2(9), Article 095001. https://doi.org/10.1088/2515-7620/abb0db
  • Çanakkale. (2006, Ağustos 12). In Wikipedia. https://tr.wikipedia.org/wiki/%C3%87anakkale
  • Çanakkale Belediyesi. (t.y.). Coğrafi yapı. 28 Ağustos 2023’de https://www.canakkale.bel.tr/tr/sayfa/1125-cografi-yapi adresinden alındı.
  • Çanakkale İl Kültür ve Turizm Müdürlüğü. (t.y.). Coğrafya. 29 Ağustos 2023’de https://canakkale.ktb.gov.tr/TR-70467/Cografya.Html adresinden alındı.
  • Çolak, E., & Sunar, F. (2020). Evaluation of forest fire risk in the Mediterranean Turkish forests: A case study of Menderes region, Izmir. International Journal of Disaster Risk Reduction, 45, Article 101479. https://doi.org/10.1016/j.ijdrr.2020.101479
  • Doerr, S. H., & Santín, C. (2016). Global trends in wildfire and its impacts: perceptions versus realities in a changing world. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1696), Article 20150345. https://doi.org/10.1098/rstb.2015.0345
  • Elvan, O. D., Birben, S., Özkan, U. Y., Yıldırım, H. T., & Türker, Y. Z. (2021). Forest fire and law: an analysis of Turkish forest fire legislation based on Food and Agriculture Organization criteria. Fire Ecology, 17(1), Article 12. https://doi.org/10.1186/s42408-021-00102-7
  • Food and Agriculture Organization. (2022). The State of the World’s Forests 2022. Forest pathways for green recovery and building inclusive, resilient and sustainable economies. Food and Agriculture Organization of the United Nations (FAO). https://doi.org/10.4060/cb9360en
  • Flannigan, M. D., Amiro, B. D., Logan, K. A., Stocks, B. J., & Wotton, B. M. (2006). Forest fires and climate change in the 21ST century. Mitigation and Adaptation Strategies for Global Change, 11(4), 847–859. https://doi.org/10.1007/s11027-005-9020-7
  • Geffen, J. V., Eskes, H. J., Boersma, K. F., & Veefkind, J. P. (2022). TROPOMI ATBD of the total and tropospheric NO2 data products. Royal Netherlands Meteorological Institute. https://sentinel.esa.int/documents/247904/2476257/sentinel-5p-tropomi-atbd-no2-data-products
  • Giglio, L., & Roy, D. (2020). On the outstanding need for a long-term, multi-decadal, validated and quality assessed record of global burned area: caution in the use of advanced very high resolution radiometer data. Science of Remote Sensing, 2, Article 100007. https://doi.org/10.1016/j.srs.2020.100007
  • Goldberg, D. L., Lu, Z., Streets, D. G., de Foy, B., Griffin, D., McLinden, C. A., Lamsal, L. N., Krotkov, N. A., & Eskes, H. (2019). Enhanced Capabilities of TROPOMI NO2: Estimating NOX from North American Cities and Power Plants. Environmental Science & Technology, 53(21), 12594–12601. https://doi.org/10.1021/acs.est.9b04488
  • Grecu, S. P., Sluser, B. M., & Mihailescu, B. C. (2019). Statistical approach of environmental quality management and political decision-making at local level: case study Iaşı city, Romania. Environmental Engineering and Management Journal, 19(3), 517–530. https://doi.org/10.30638/eemj.2020.050
  • Jeong, U., & Hong, H. (2021). Assessment of tropospheric concentrations of NO2 from the TROPOMI/Sentinel-5 precursor for the estimation of long-term exposure to surface NO2 over South Korea. Remote Sensing, 13(10), Article 1877. https://doi.org/10.3390/rs13101877
  • Johnston, F. H., Henderson, S. B., Chen, Y., Randerson, J. T., Marlier, M., DeFries, R. S., Kinney, P., Bowman, D. M., & Brauer, M. (2012). Estimated global mortality attributable to smoke from landscape fires. Environmental Health Perspectives, 120(5), 695–701. https://doi.org/10.1289/ehp.1104422
  • Kalabokidis, K., Palaiologou, P., & Finney, M. (2013, July 1-4). Fire behavior simulation in Mediterranean forests using the minimum travel time algorithm [Conference presentation]. 4th Fire Behavior and Fuels Conference, St. Petersburg, Russia. https://www.fs.usda.gov/rm/pubs_other/rmrs_2014_kalabokidis_k001.pdf
  • Khabarov, N., Krasovskii, A., Obersteiner, M., Swart, R., Dosio, A., San-Miguel-Ayanz, J., Durrant, T., Camia, A., & Migliavacca, M. (2014). Forest fires and adaptation options in Europe. Regional Environmental Change, 16(1), 21–30. https://doi.org/10.1007/s10113-014-0621-0
  • Kolanek, A., Szymanowski, M., & Raczyk, A. (2021). Human activity affects forest fires: the impact of anthropogenic factors on the density of forest fires in Poland. Forests, 12(6), Article 728. https://doi.org/10.3390/f12060728
  • Kolusu, S. R., Marsham, J. H., Mulcahy, J., Johnson, B., Dunning, C., Bush, M., & Spracklen, D. V. (2015). Impacts of Amazonia biomass burning aerosols assessed from short-range weather forecasts. Atmospheric Chemistry and Physics, 15(21), 12251–12266. https://doi.org/10.5194/acp-15-12251-2015
  • Lamarque, J. F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., . . . van Vuuren, D. P. (2010). Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmospheric Chemistry and Physics, 10(15), 7017–7039. https://doi.org/10.5194/acp-10-7017-2010
  • Lasslop, G., Hantson, S., Harrison, S. P., Bachelet, D., Burton, C., Forkel, M., Forrest, M., Li, F., Melton, J. R., Yue, C., Archibald, S., Scheiter, S., Arneth, A., Hickler, T., & Sitch, S. (2020). Global ecosystems and fire: Multi‐model assessment of fire‐induced tree‐cover and carbon storage reduction. Global Change Biology, 26(9), 5027–5041. https://doi.org/10.1111/gcb.15160
  • Le, T. H., Thanh Nguyen, T. N., Lasko, K., Ilavajhala, S., Vadrevu, K. P., & Justice, C. (2014). Vegetation fires and air pollution in Vietnam. Environmental Pollution, 195, 267–275. https://doi.org/10.1016/j.envpol.2014.07.023
  • Lerma-Arce, V., Yagüe-Hurtado, C., Van den Berg, H., García-Folgado, M., Oliver-Villanueva, J. V., Benhalima, Y., Marques-Duarte, I., Acácio, V., Rego, F., López-Senespleda, E., Menéndez-Miguélez, M., Ruiz-Peinado, R., Petillon, T., Jalabert, S., Carbó-Valverde, E., Gimeno-García, E., Aleix-Amurrio, R., & Lorenzo-Sáez, E. (2023). Development of a model to estimate the risk of emission of greenhouse gases from forest fires. Fire, 6(1), Article 8. https://doi.org/10.3390/fire6010008
  • Magro, C., Nunes, L., Gonçalves, O., Neng, N., Nogueira, J., Rego, F., & Vieira, P. (2021). Atmospheric trends of CO and CH4 from extreme wildfires in Portugal using Sentinel-5P TROPOMI Level-2 data. Fire, 4(2), Article 25. https://doi.org/10.3390/fire4020025
  • Mansoor, S., Farooq, I., Kachroo, M. M., Mahmoud, A. E. D., Fawzy, M., Popescu, S. M., Alyemeni, M., Sonne, C., Rinklebe, J., & Ahmad, P. (2022). Elevation in wildfire frequencies with respect to the climate change. Journal of Environmental Management, 301, Article 113769. https://doi.org/10.1016/j.jenvman.2021.113769
  • Meteoroloji Genel Müdürlüğü. (2023). Meteoroloji Genel Müdürlüğü Resmi İstatistikler. 29 Ağustos 2023’de https://www.mgm.gov.tr/Veridegerlendirme/Il-ve-Ilceler-Istatistik.Aspx?M=CANAKKALE adresinden alındı.
  • Minallah, N., Khan, M., Khan, W., Sethi, M. A., & Khan, A. S. (2021). Impact analysis of wildfire by means of satellite based cyber-physical system. International Journal of Scientific & Technology Research, 10(6), 325–335.
  • Orman Genel Müdürlüğü. (2021). 2020 Türkiye orman varlığı. T.C. Tarım ve Orman Bakanlığı, Orman Genel Müdürlüğü.
  • Ray, T., Malasiya, D., Dar, J. A., Khare, P. K., Khan, M. L., Verma, S., & Dayanandan, A. (2019). Estimation of greenhouse gas emissions from vegetation fires in central India. Climate Change and Environmental Sustainability, 7(1), Article 32. https://doi.org/10.5958/2320-642x.2019.00005.x
  • Reid, C. E., Brauer, M., Johnston, F. H., Jerrett, M., Balmes, J. R., & Elliott, C. T. (2016). Critical review of health impacts of wildfire smoke exposure. Environmental Health Perspectives, 124(9), 1334–1343. https://doi.org/10.1289/ehp.1409277
  • Rigo, D., Libertà, G., Durrant, T. H., Vivancos, T. A., & San-Miguel-Ayanz, J. (2017). Forest fire danger extremes in Europe under climate change: variability and uncertainty (EUR 28926 EN, JRC108974). Publications Office of the European Union. https://publications.jrc.ec.europa.eu/repository/handle/JRC108974
  • Roy, D. P., Huang, H., Boschetti, L., Giglio, L., Yan, L., Zhang, H. H., & Li, Z. (2019). Landsat-8 and Sentinel-2 burned area mapping - A combined sensor multi-temporal change detection approach. Remote Sensing of Environment, 231, Article 111254. https://doi.org/10.1016/j.rse.2019.111254
  • Tosca, M. G., Randerson, J. T., & Zender, C. S. (2013). Global impact of smoke aerosols from landscape fires on climate and the Hadley circulation. Atmospheric Chemistry and Physics, 13(10), 5227–5241. https://doi.org/10.5194/acp-13-5227-2013
  • van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., & van Leeuwen, T. T. (2010). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics, 10(23), 11707–11735. https://doi.org/10.5194/acp-10-11707-2010
  • Volkova, L., Roxburgh, S. H., Surawski, N. C., Meyer, C. M., & Weston, C. J. (2019). Improving reporting of national greenhouse gas emissions from forest fires for emission reduction benefits: An example from Australia. Environmental Science & Policy, 94, 49–62. https://doi.org/10.1016/j.envsci.2018.12.023
  • Wooster, M. J., Roberts, G. J., Giglio, L., Roy, D. P., Freeborn, P. H., Boschetti, L., Justice, C., Ichoku, C., Schroeder, W., Davies, D., Smith, A. M., Setzer, A., Csiszar, I., Strydom, T., Frost, P., Zhang, T., Xu, W., de Jong, M. C., Johnston, J. M., . . . San-Miguel-Ayanz, J. (2021). Satellite remote sensing of active fires: History and current status, applications and future requirements. Remote Sensing of Environment, 267, Article 112694. https://doi.org/10.1016/j.rse.2021.112694
  • Yarragunta, Y., Srivastava, S., Mitra, D., & Chandola, H. C. (2020). Influence of forest fire episodes on the distribution of gaseous air pollutants over Uttarakhand, India. GIScience & Remote Sensing, 57(2), 190–206. https://doi.org/10.1080/15481603.2020.1712100
  • Zheng, Yang, Wu, & Marinello. (2019). Spatial variation of NO2 and its impact factors in China: an application of Sentinel-5P products. Remote Sensing, 11(16), Article 1939. https://doi.org/10.3390/rs11161939
  • Zhou, Y., Yan, H., & Luo, J. J. (2021). Impacts of Amazon fire aerosols on the subseasonal circulations of the mid-high latitudes. Frontiers in Earth Science, 8, Article 609554. https://doi.org/10.3389/feart.2021.609554
  • Zielinski, T., Petelski, T., Strzalkowska, A., Pakszys, P., & Makuch, P. (2016). Impact of wild forest fires in Eastern Europe on aerosol composition and particle optical properties. Oceanologia, 58(1), 13–24. https://doi.org/10.1016/j.oceano.2015.07.005
  • Zweers, D. C. S. (2022). TROPOMI ATBD of the UV aerosol index. Royal Netherlands Meteorological Institute. https://sentinel.esa.int/documents/247904/2476257/Sentinel-5P-TROPOMI-ATBD-UV-Aerosol-Index.pdf

Orman Yangını Sonrası Oluşan Hasarın ve Hava Kirletici Parametrelerin İzlenmesi: Çanakkale Yangını Örneği

Year 2024, Volume: 10 Issue: 1, 103 - 112, 28.01.2024
https://doi.org/10.21324/dacd.1355463

Abstract

Ormanlar, sahip olduğu biyoçeşitlilik ile sağladığı katkılar açısından yeryüzünün vazgeçilmez bir parçasıdır. Gezegenimizin üçte birine yayılmış durumda olan ormanları etkileyen en önemli faktörlerin başında yangınlar gelmektedir. Orman yangınları yeryüzündeki doğal afetler içerisinde neden oldukları yıkıcı etkiler ile öne çıkmakta, ayrıca çok önemli bir gaz ve aerosol kaynağı olarak nitelendirilmektedirler. Orman yangınlarının takibi, afet izleme ve önleme açısından son derece önemli bir durumdur. Son yıllarda yangınların takibinde sıklıkla kullanılmakta olan Coğrafi Bilgi Sistemleri (CBS) ve Uzaktan Algılama, veri toplama, analiz ve yorumlama bakımından öne çıkan yöntemlerdir. Bu çalışma, 22 Ağustos 2023 tarihinde Çanakkale’de meydana gelen ve 3 gün süren orman yangınının Sentinel–2 ve 5P uzaktan algılama görüntüleri ve CBS yardımıyla analizine odaklanmaktadır. Analizin sonuçları, yangından etkilenen toplam alanın 4191.93 hektara (ha) yayıldığını ve çok çeşitli Arazi Örtüsü / Kullanımı sınıflarını kapsadığını ortaya koymuştur. Özellikle, ormanlar ve tarım arazileri bu bölgede en belirgin hasarı görmüştür. Çalışmada ayrıca yangın sonrasında atmosfere yayılan kirletici maddelerin yoğunluğunu gösteren Aerosol indeks değeri ve Azot dioksit (NO2) hava kirliliği parametreleri izlenmiş ve uydu görüntüleri aracılığıyla konsantrasyonları belirlenmiştir. Kaydedilen en yüksek NO2 konsantrasyonu yangının son günü olan 24 Ağustos’ta 0.02624702 mol/m² olarak tespit edilmiştir. Üç günlük toplam atmosfere yayılan NO2 değeri ise 0.06020184 mol/m² olarak belirlenmiştir.

References

  • Butt, E. W., Conibear, L., Reddington, C. L., Darbyshire, E., Morgan, W. T., Coe, H., Artaxo, P., Brito, J., Knote, C., & Spracklen, D. V. (2020). Large air quality and human health impacts due to amazon forest and vegetation fires. Environmental Research Communications, 2(9), Article 095001. https://doi.org/10.1088/2515-7620/abb0db
  • Çanakkale. (2006, Ağustos 12). In Wikipedia. https://tr.wikipedia.org/wiki/%C3%87anakkale
  • Çanakkale Belediyesi. (t.y.). Coğrafi yapı. 28 Ağustos 2023’de https://www.canakkale.bel.tr/tr/sayfa/1125-cografi-yapi adresinden alındı.
  • Çanakkale İl Kültür ve Turizm Müdürlüğü. (t.y.). Coğrafya. 29 Ağustos 2023’de https://canakkale.ktb.gov.tr/TR-70467/Cografya.Html adresinden alındı.
  • Çolak, E., & Sunar, F. (2020). Evaluation of forest fire risk in the Mediterranean Turkish forests: A case study of Menderes region, Izmir. International Journal of Disaster Risk Reduction, 45, Article 101479. https://doi.org/10.1016/j.ijdrr.2020.101479
  • Doerr, S. H., & Santín, C. (2016). Global trends in wildfire and its impacts: perceptions versus realities in a changing world. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1696), Article 20150345. https://doi.org/10.1098/rstb.2015.0345
  • Elvan, O. D., Birben, S., Özkan, U. Y., Yıldırım, H. T., & Türker, Y. Z. (2021). Forest fire and law: an analysis of Turkish forest fire legislation based on Food and Agriculture Organization criteria. Fire Ecology, 17(1), Article 12. https://doi.org/10.1186/s42408-021-00102-7
  • Food and Agriculture Organization. (2022). The State of the World’s Forests 2022. Forest pathways for green recovery and building inclusive, resilient and sustainable economies. Food and Agriculture Organization of the United Nations (FAO). https://doi.org/10.4060/cb9360en
  • Flannigan, M. D., Amiro, B. D., Logan, K. A., Stocks, B. J., & Wotton, B. M. (2006). Forest fires and climate change in the 21ST century. Mitigation and Adaptation Strategies for Global Change, 11(4), 847–859. https://doi.org/10.1007/s11027-005-9020-7
  • Geffen, J. V., Eskes, H. J., Boersma, K. F., & Veefkind, J. P. (2022). TROPOMI ATBD of the total and tropospheric NO2 data products. Royal Netherlands Meteorological Institute. https://sentinel.esa.int/documents/247904/2476257/sentinel-5p-tropomi-atbd-no2-data-products
  • Giglio, L., & Roy, D. (2020). On the outstanding need for a long-term, multi-decadal, validated and quality assessed record of global burned area: caution in the use of advanced very high resolution radiometer data. Science of Remote Sensing, 2, Article 100007. https://doi.org/10.1016/j.srs.2020.100007
  • Goldberg, D. L., Lu, Z., Streets, D. G., de Foy, B., Griffin, D., McLinden, C. A., Lamsal, L. N., Krotkov, N. A., & Eskes, H. (2019). Enhanced Capabilities of TROPOMI NO2: Estimating NOX from North American Cities and Power Plants. Environmental Science & Technology, 53(21), 12594–12601. https://doi.org/10.1021/acs.est.9b04488
  • Grecu, S. P., Sluser, B. M., & Mihailescu, B. C. (2019). Statistical approach of environmental quality management and political decision-making at local level: case study Iaşı city, Romania. Environmental Engineering and Management Journal, 19(3), 517–530. https://doi.org/10.30638/eemj.2020.050
  • Jeong, U., & Hong, H. (2021). Assessment of tropospheric concentrations of NO2 from the TROPOMI/Sentinel-5 precursor for the estimation of long-term exposure to surface NO2 over South Korea. Remote Sensing, 13(10), Article 1877. https://doi.org/10.3390/rs13101877
  • Johnston, F. H., Henderson, S. B., Chen, Y., Randerson, J. T., Marlier, M., DeFries, R. S., Kinney, P., Bowman, D. M., & Brauer, M. (2012). Estimated global mortality attributable to smoke from landscape fires. Environmental Health Perspectives, 120(5), 695–701. https://doi.org/10.1289/ehp.1104422
  • Kalabokidis, K., Palaiologou, P., & Finney, M. (2013, July 1-4). Fire behavior simulation in Mediterranean forests using the minimum travel time algorithm [Conference presentation]. 4th Fire Behavior and Fuels Conference, St. Petersburg, Russia. https://www.fs.usda.gov/rm/pubs_other/rmrs_2014_kalabokidis_k001.pdf
  • Khabarov, N., Krasovskii, A., Obersteiner, M., Swart, R., Dosio, A., San-Miguel-Ayanz, J., Durrant, T., Camia, A., & Migliavacca, M. (2014). Forest fires and adaptation options in Europe. Regional Environmental Change, 16(1), 21–30. https://doi.org/10.1007/s10113-014-0621-0
  • Kolanek, A., Szymanowski, M., & Raczyk, A. (2021). Human activity affects forest fires: the impact of anthropogenic factors on the density of forest fires in Poland. Forests, 12(6), Article 728. https://doi.org/10.3390/f12060728
  • Kolusu, S. R., Marsham, J. H., Mulcahy, J., Johnson, B., Dunning, C., Bush, M., & Spracklen, D. V. (2015). Impacts of Amazonia biomass burning aerosols assessed from short-range weather forecasts. Atmospheric Chemistry and Physics, 15(21), 12251–12266. https://doi.org/10.5194/acp-15-12251-2015
  • Lamarque, J. F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., . . . van Vuuren, D. P. (2010). Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmospheric Chemistry and Physics, 10(15), 7017–7039. https://doi.org/10.5194/acp-10-7017-2010
  • Lasslop, G., Hantson, S., Harrison, S. P., Bachelet, D., Burton, C., Forkel, M., Forrest, M., Li, F., Melton, J. R., Yue, C., Archibald, S., Scheiter, S., Arneth, A., Hickler, T., & Sitch, S. (2020). Global ecosystems and fire: Multi‐model assessment of fire‐induced tree‐cover and carbon storage reduction. Global Change Biology, 26(9), 5027–5041. https://doi.org/10.1111/gcb.15160
  • Le, T. H., Thanh Nguyen, T. N., Lasko, K., Ilavajhala, S., Vadrevu, K. P., & Justice, C. (2014). Vegetation fires and air pollution in Vietnam. Environmental Pollution, 195, 267–275. https://doi.org/10.1016/j.envpol.2014.07.023
  • Lerma-Arce, V., Yagüe-Hurtado, C., Van den Berg, H., García-Folgado, M., Oliver-Villanueva, J. V., Benhalima, Y., Marques-Duarte, I., Acácio, V., Rego, F., López-Senespleda, E., Menéndez-Miguélez, M., Ruiz-Peinado, R., Petillon, T., Jalabert, S., Carbó-Valverde, E., Gimeno-García, E., Aleix-Amurrio, R., & Lorenzo-Sáez, E. (2023). Development of a model to estimate the risk of emission of greenhouse gases from forest fires. Fire, 6(1), Article 8. https://doi.org/10.3390/fire6010008
  • Magro, C., Nunes, L., Gonçalves, O., Neng, N., Nogueira, J., Rego, F., & Vieira, P. (2021). Atmospheric trends of CO and CH4 from extreme wildfires in Portugal using Sentinel-5P TROPOMI Level-2 data. Fire, 4(2), Article 25. https://doi.org/10.3390/fire4020025
  • Mansoor, S., Farooq, I., Kachroo, M. M., Mahmoud, A. E. D., Fawzy, M., Popescu, S. M., Alyemeni, M., Sonne, C., Rinklebe, J., & Ahmad, P. (2022). Elevation in wildfire frequencies with respect to the climate change. Journal of Environmental Management, 301, Article 113769. https://doi.org/10.1016/j.jenvman.2021.113769
  • Meteoroloji Genel Müdürlüğü. (2023). Meteoroloji Genel Müdürlüğü Resmi İstatistikler. 29 Ağustos 2023’de https://www.mgm.gov.tr/Veridegerlendirme/Il-ve-Ilceler-Istatistik.Aspx?M=CANAKKALE adresinden alındı.
  • Minallah, N., Khan, M., Khan, W., Sethi, M. A., & Khan, A. S. (2021). Impact analysis of wildfire by means of satellite based cyber-physical system. International Journal of Scientific & Technology Research, 10(6), 325–335.
  • Orman Genel Müdürlüğü. (2021). 2020 Türkiye orman varlığı. T.C. Tarım ve Orman Bakanlığı, Orman Genel Müdürlüğü.
  • Ray, T., Malasiya, D., Dar, J. A., Khare, P. K., Khan, M. L., Verma, S., & Dayanandan, A. (2019). Estimation of greenhouse gas emissions from vegetation fires in central India. Climate Change and Environmental Sustainability, 7(1), Article 32. https://doi.org/10.5958/2320-642x.2019.00005.x
  • Reid, C. E., Brauer, M., Johnston, F. H., Jerrett, M., Balmes, J. R., & Elliott, C. T. (2016). Critical review of health impacts of wildfire smoke exposure. Environmental Health Perspectives, 124(9), 1334–1343. https://doi.org/10.1289/ehp.1409277
  • Rigo, D., Libertà, G., Durrant, T. H., Vivancos, T. A., & San-Miguel-Ayanz, J. (2017). Forest fire danger extremes in Europe under climate change: variability and uncertainty (EUR 28926 EN, JRC108974). Publications Office of the European Union. https://publications.jrc.ec.europa.eu/repository/handle/JRC108974
  • Roy, D. P., Huang, H., Boschetti, L., Giglio, L., Yan, L., Zhang, H. H., & Li, Z. (2019). Landsat-8 and Sentinel-2 burned area mapping - A combined sensor multi-temporal change detection approach. Remote Sensing of Environment, 231, Article 111254. https://doi.org/10.1016/j.rse.2019.111254
  • Tosca, M. G., Randerson, J. T., & Zender, C. S. (2013). Global impact of smoke aerosols from landscape fires on climate and the Hadley circulation. Atmospheric Chemistry and Physics, 13(10), 5227–5241. https://doi.org/10.5194/acp-13-5227-2013
  • van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., & van Leeuwen, T. T. (2010). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics, 10(23), 11707–11735. https://doi.org/10.5194/acp-10-11707-2010
  • Volkova, L., Roxburgh, S. H., Surawski, N. C., Meyer, C. M., & Weston, C. J. (2019). Improving reporting of national greenhouse gas emissions from forest fires for emission reduction benefits: An example from Australia. Environmental Science & Policy, 94, 49–62. https://doi.org/10.1016/j.envsci.2018.12.023
  • Wooster, M. J., Roberts, G. J., Giglio, L., Roy, D. P., Freeborn, P. H., Boschetti, L., Justice, C., Ichoku, C., Schroeder, W., Davies, D., Smith, A. M., Setzer, A., Csiszar, I., Strydom, T., Frost, P., Zhang, T., Xu, W., de Jong, M. C., Johnston, J. M., . . . San-Miguel-Ayanz, J. (2021). Satellite remote sensing of active fires: History and current status, applications and future requirements. Remote Sensing of Environment, 267, Article 112694. https://doi.org/10.1016/j.rse.2021.112694
  • Yarragunta, Y., Srivastava, S., Mitra, D., & Chandola, H. C. (2020). Influence of forest fire episodes on the distribution of gaseous air pollutants over Uttarakhand, India. GIScience & Remote Sensing, 57(2), 190–206. https://doi.org/10.1080/15481603.2020.1712100
  • Zheng, Yang, Wu, & Marinello. (2019). Spatial variation of NO2 and its impact factors in China: an application of Sentinel-5P products. Remote Sensing, 11(16), Article 1939. https://doi.org/10.3390/rs11161939
  • Zhou, Y., Yan, H., & Luo, J. J. (2021). Impacts of Amazon fire aerosols on the subseasonal circulations of the mid-high latitudes. Frontiers in Earth Science, 8, Article 609554. https://doi.org/10.3389/feart.2021.609554
  • Zielinski, T., Petelski, T., Strzalkowska, A., Pakszys, P., & Makuch, P. (2016). Impact of wild forest fires in Eastern Europe on aerosol composition and particle optical properties. Oceanologia, 58(1), 13–24. https://doi.org/10.1016/j.oceano.2015.07.005
  • Zweers, D. C. S. (2022). TROPOMI ATBD of the UV aerosol index. Royal Netherlands Meteorological Institute. https://sentinel.esa.int/documents/247904/2476257/Sentinel-5P-TROPOMI-ATBD-UV-Aerosol-Index.pdf
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Air Pollution Modelling and Control, Photogrammetry and Remote Sensing, Geographic Information Systems
Journal Section Research Articles
Authors

Özer Akyürek 0000-0002-5179-0191

Publication Date January 28, 2024
Submission Date September 5, 2023
Acceptance Date November 6, 2023
Published in Issue Year 2024Volume: 10 Issue: 1

Cite

APA Akyürek, Ö. (2024). Orman Yangını Sonrası Oluşan Hasarın ve Hava Kirletici Parametrelerin İzlenmesi: Çanakkale Yangını Örneği. Doğal Afetler Ve Çevre Dergisi, 10(1), 103-112. https://doi.org/10.21324/dacd.1355463
AMA Akyürek Ö. Orman Yangını Sonrası Oluşan Hasarın ve Hava Kirletici Parametrelerin İzlenmesi: Çanakkale Yangını Örneği. J Nat Haz Environ. January 2024;10(1):103-112. doi:10.21324/dacd.1355463
Chicago Akyürek, Özer. “Orman Yangını Sonrası Oluşan Hasarın Ve Hava Kirletici Parametrelerin İzlenmesi: Çanakkale Yangını Örneği”. Doğal Afetler Ve Çevre Dergisi 10, no. 1 (January 2024): 103-12. https://doi.org/10.21324/dacd.1355463.
EndNote Akyürek Ö (January 1, 2024) Orman Yangını Sonrası Oluşan Hasarın ve Hava Kirletici Parametrelerin İzlenmesi: Çanakkale Yangını Örneği. Doğal Afetler ve Çevre Dergisi 10 1 103–112.
IEEE Ö. Akyürek, “Orman Yangını Sonrası Oluşan Hasarın ve Hava Kirletici Parametrelerin İzlenmesi: Çanakkale Yangını Örneği”, J Nat Haz Environ, vol. 10, no. 1, pp. 103–112, 2024, doi: 10.21324/dacd.1355463.
ISNAD Akyürek, Özer. “Orman Yangını Sonrası Oluşan Hasarın Ve Hava Kirletici Parametrelerin İzlenmesi: Çanakkale Yangını Örneği”. Doğal Afetler ve Çevre Dergisi 10/1 (January 2024), 103-112. https://doi.org/10.21324/dacd.1355463.
JAMA Akyürek Ö. Orman Yangını Sonrası Oluşan Hasarın ve Hava Kirletici Parametrelerin İzlenmesi: Çanakkale Yangını Örneği. J Nat Haz Environ. 2024;10:103–112.
MLA Akyürek, Özer. “Orman Yangını Sonrası Oluşan Hasarın Ve Hava Kirletici Parametrelerin İzlenmesi: Çanakkale Yangını Örneği”. Doğal Afetler Ve Çevre Dergisi, vol. 10, no. 1, 2024, pp. 103-12, doi:10.21324/dacd.1355463.
Vancouver Akyürek Ö. Orman Yangını Sonrası Oluşan Hasarın ve Hava Kirletici Parametrelerin İzlenmesi: Çanakkale Yangını Örneği. J Nat Haz Environ. 2024;10(1):103-12.