Araştırma Makalesi
BibTex RIS Kaynak Göster

Küresel Atmosferik Salınımların Büyük Menderes ve Gediz Akarsularının Akımları Üzerindeki Etkisi

Yıl 2022, Cilt: 8 Sayı: 1, 1 - 13, 14.01.2022
https://doi.org/10.21324/dacd.910666

Öz

Son zamanlarda yapılan çalışmalar küresel atmosferik salınımların iklim parametreleri üzerinde etkili olduğunu göstermektedir. Bu çalışma, Kuzey Atlantik Salınımı (NAO), Arktik Salınım (AO) ve Güneyli Salınımı (SO) gibi küresel atmosferik salınımları ile Büyük Menderes ve Gediz akımları arasındaki ilişkinin belirlenmesi için yapılmıştır. Büyük Menderes ve Gediz havzalarında bulunan 1970-2015 yılları arasındaki 45 yıllık dönemde ölçümleri Devlet Su İşleri (DSİ) tarafından yapılan 5 akım istasyonundaki yıllık ve mevsimlik ortalama akımlar incelenmiştir. Daha sonra, NAO, AO ve SO indeksleri ile yıllık ve mevsimsel akımlar arasındaki ilişki korelasyon analizi ile belirlenmiştir. Ayrıca, istenilen sayıda periyodik bileşenler elde edebilmek için orijinal akım verileri ayrık dalgacık dönüşümü ile bileşenlerine ayrılmıştır. Bulunan dalgacık bileşenleri (D1, D2, D3, D4 ve A) ile atmosferik indeksler arasındaki korelasyonlar incelenmiştir. Sonuç olarak, akımlar ile AO/NAO indeksleri arasında yıllık, kış ve ilkbahar periyotlarında güçlü bir negatif korelasyon vardır. Ayrıca dalgacık periyodik bileşenleri, küresel atmosferik salınımların akım verileri ile ilişkisinin temel faktörlerini göstermiştir.

Kaynakça

  • Adamovski J., Prokoph A., (2014), Determining the amplitude and timing of streamflow discontinuities: A cross wavelet analysis approach, Hydrological Processes, 28(5), 2782-2793.
  • Adarsh S., Reddy M.J., (2015), Trend analysis of rainfall in four meteorological subdivisions of southern India using nonparametric methods and discrete wavelet transforms, International journal of Climatology, 35(6), 1107–1124.
  • Bayazıt M., Yeğen Oğuz E.B., (2005), Mühendisler İçin İstatistik, Birsen Yayınevi, İstanbul, 197ss.
  • Burt T., Howden N., (2013), North Atlantic Oscillation amplifies orographic precipitation and river flow in upland Britain, Water Resources Research, 49(6), 3504-3515.
  • Cannas B., Fanni A., See L., Sias G., (2006), Data processing for river flow forecasting using neural networks: Wavelet transforms and data partitioning, Physics and Chemistry of the Earth, 31, 1164-1171.
  • Daubechies I., (1990), The wavelet transform, time-frequency locatization and signal analysis, IEEE Transactions on Information Theory, 36(5), 961 – 1005.
  • Dettinger M.D., Diaz H.F., (2000), Global characteristics of stream flow seasonality and variability, Journal of Hydrometeorolgy, 1(4), 289–310.
  • DSİ, (2019), Devlet Su İşleri Genel Müdürlüğü akım gözlem yıllıkları, http://www.dsi.gov.tr/faaliyetler/akim-gozlem-yilliklari (Erişim 01 Eylül 2019).
  • Durdu Ö. F., (2010), Effects of climate change on water resources of the Büyük Menderes River basin, western Turkey, Turkish Journal of Agriculture and Forestry, 34(4), 319-332.
  • Düzenli E., Tabari H., Willems P., Yilmaz MT., (2018), Decadal variability analysis of extreme precipitation in Turkey and its relationship with teleconnection patterns, Hydrological Processes, 32(23), 3513-3528.
  • Fendekova M., Pekárová P., Fendek M., Pekár J., Škoda P., (2014), Global drivers effect in multi-annual variability of runoff, Journal of Hydrology and Hydrometeorology, 62, 169-176.
  • Hurrell J.W., (1995), Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation, Science, 269, 676-679.
  • Iqbal M.A., Penas A., Cano-Ortiz A., Kersebaum K., Herrero L., del Río S., (2016), Analysis of recent changes in maximum and minimum temperatures in Pakistan, Atmospheric Research, 168, 234-249.
  • Jiang R., Gan, T.Y., Xie J., Wang N., (2014), Spatiotemporal variability of Alberta's seasonal precipitation, their teleconnection with large-scale climate anomalies and sea surface temperature, International journal of climatology, 34(9), 2899-2917.
  • Kahya E, Karabörk C., (2001), The analysis of El Niño and La Niña signals in streamflows of Turkey, International Journal of climatology, 21(10), 1231-1250.
  • Karabörk M.C., Kahya E., Karaca M., (2005), The influences of the Southern and North Atlantic, Oscillations on climatic surface variables in Turkey, Hydrological Processes, 19(6), 1185-1211.
  • Kutiel H., Türkes M., (2005), New Evidence for the role of the North Sea-Caspian pattern on the temperature and precipitation regimes in Continental Central, Geografiska Annaler. 87(4), 501-513.
  • Mallat S.G., (1989), A theory for multiresoluion signal decomposition: The wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 674-693.
  • Meyer Y., (1993), Wavelets Algorithms & Applications, Society for Industrial and Applied Mathematics, Philadelphia, 133ss.
  • Nalley D., Adamovski J., Khalil B., (2012), Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario, Journal of Hydrology, 475, 204-228.
  • Nourani V., Baghanam A.H., Adamowski J., Kişi Ö., (2014), Applications of hybrid wavelet–artificial intelligence models in hydrology: a review, Journal of Hydrology, 514, 358-377.
  • Partal T., (2012), Wavelet analysis and multi-scale characteristics of the runoff and precipitation series of the Aegean region (Turkey), International Journal of Climatology, 32, 108-120.
  • Philandras C., Nastos P., Kapsomenakis I. Repapis C., (2015), Climatology of upper air temperature in the Eastern Mediterranean region, Atmospheric Research, 152, 29-42.
  • Pisoft P., Kalvova J., Brazdil R., (2004), Cycles and trends in the Czech temperatures series using wavelet transform, International Journal of Climatology, 24,1661-1670.
  • Polonsky A.B., Bardin M.Y., Voskresenskaya E.N. (2007), Statistical characteristics of cyclones and anticyclones over the Black Sea in the second half of the 20th century, Physical Oceanography,17, 348–359.
  • Sagarika S., Kalra A., Ahmad S., (2015), Interconnection between oceanic-atmospheric indices and variability in the US streamflow, Journal of Hydrology, 525, 724–736.
  • Sezen C, Partal T., (2019), The impacts of Arctic oscillation and the North Sea Caspian pattern on the temperature and precipitation regime in Turkey, Meteorology and Atmospheric Physics, 131, 1677–1696.
  • Tamaddun K.A., Kalra A., Ahmad S., (2016), Wavelet analyses of western US streamflow with ENSO and PDO, Journal of Water and Climate Change, 8(1), 26–39.
  • Türkeş M, Erlat E., (2018), Variability and trends in record air temperature events of Turkey and their associations with atmospheric oscillations and anomalous circulation patterns, International Journal of Climatology, 38(14), 5182-5204.
  • Vazifehkhah S, Kahya E., (2018), Hydrological drought associations with extreme phases of the North Atlantic and Arctic Oscillations over Turkey and northern Iran, International journal of Climatology, 38(12), 4459-4475.
  • Voskresenskaya E.N., Maslova V.N., (2011), Winter-spring cyclonic variability in the Mediterranean-Black Sea region associated with global processes in the ocean-atmosphere system, Advances in Science and Research, 6, 237–243.
  • Ward P.J., Kummu M., Lall U., (2016), Flood frequencies and durations and their response to El Niño Southern Oscillation: Global analysis, Journal of Hydrology, 539, 358-378.
  • Yılmaz C.B., Demir V., Sevimli M.F., (2020), Karadeniz Yağışlarının Kuzey Atlantik Salnımı ile İlişkisi, Gazi Mühendislik Bilimleri Dergisi, 6(3), 248-254.

The Impacts of Global Atmospheric Oscillations on Büyük Menderes and Gediz Streamflows

Yıl 2022, Cilt: 8 Sayı: 1, 1 - 13, 14.01.2022
https://doi.org/10.21324/dacd.910666

Öz

Recent studies show that global atmospheric circulations are efficient on climate parameters. This study has been carried out to analyze the relationship between the streamflow data in Büyük Menderes/Gediz Basin and the global atmospheric oscillations such as the Southern Oscillation (SO), the North Atlantic Oscillation (NAO) and the Arctic Oscillation (AO). The average annual and seasonal flows at the current 5 stations located in Büyük Menderes basin and Gediz basin, whose measurements were made by the DSI in the 45 year period between 1970 and 2015 have been studied. Then, the relationship between NAO, AO, SO indices and streamflows was determined by correlation analysis. In addition, in order to obtain the periodic components, the original observed data were separated into their components by discrete wavelet transform. The correlations between the found wavelet components (D1, D2, D3, D4 and A) and atmospheric indices were examined. As a result, this study found that there is a strong negative correlation between the streamflow and the AO/NAO indices at the annual/winter and spring period. Moreover, the wavelet periodic components showed to the main factors for the relationship of the streamflow data with the global atmospheric patterns.

Kaynakça

  • Adamovski J., Prokoph A., (2014), Determining the amplitude and timing of streamflow discontinuities: A cross wavelet analysis approach, Hydrological Processes, 28(5), 2782-2793.
  • Adarsh S., Reddy M.J., (2015), Trend analysis of rainfall in four meteorological subdivisions of southern India using nonparametric methods and discrete wavelet transforms, International journal of Climatology, 35(6), 1107–1124.
  • Bayazıt M., Yeğen Oğuz E.B., (2005), Mühendisler İçin İstatistik, Birsen Yayınevi, İstanbul, 197ss.
  • Burt T., Howden N., (2013), North Atlantic Oscillation amplifies orographic precipitation and river flow in upland Britain, Water Resources Research, 49(6), 3504-3515.
  • Cannas B., Fanni A., See L., Sias G., (2006), Data processing for river flow forecasting using neural networks: Wavelet transforms and data partitioning, Physics and Chemistry of the Earth, 31, 1164-1171.
  • Daubechies I., (1990), The wavelet transform, time-frequency locatization and signal analysis, IEEE Transactions on Information Theory, 36(5), 961 – 1005.
  • Dettinger M.D., Diaz H.F., (2000), Global characteristics of stream flow seasonality and variability, Journal of Hydrometeorolgy, 1(4), 289–310.
  • DSİ, (2019), Devlet Su İşleri Genel Müdürlüğü akım gözlem yıllıkları, http://www.dsi.gov.tr/faaliyetler/akim-gozlem-yilliklari (Erişim 01 Eylül 2019).
  • Durdu Ö. F., (2010), Effects of climate change on water resources of the Büyük Menderes River basin, western Turkey, Turkish Journal of Agriculture and Forestry, 34(4), 319-332.
  • Düzenli E., Tabari H., Willems P., Yilmaz MT., (2018), Decadal variability analysis of extreme precipitation in Turkey and its relationship with teleconnection patterns, Hydrological Processes, 32(23), 3513-3528.
  • Fendekova M., Pekárová P., Fendek M., Pekár J., Škoda P., (2014), Global drivers effect in multi-annual variability of runoff, Journal of Hydrology and Hydrometeorology, 62, 169-176.
  • Hurrell J.W., (1995), Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation, Science, 269, 676-679.
  • Iqbal M.A., Penas A., Cano-Ortiz A., Kersebaum K., Herrero L., del Río S., (2016), Analysis of recent changes in maximum and minimum temperatures in Pakistan, Atmospheric Research, 168, 234-249.
  • Jiang R., Gan, T.Y., Xie J., Wang N., (2014), Spatiotemporal variability of Alberta's seasonal precipitation, their teleconnection with large-scale climate anomalies and sea surface temperature, International journal of climatology, 34(9), 2899-2917.
  • Kahya E, Karabörk C., (2001), The analysis of El Niño and La Niña signals in streamflows of Turkey, International Journal of climatology, 21(10), 1231-1250.
  • Karabörk M.C., Kahya E., Karaca M., (2005), The influences of the Southern and North Atlantic, Oscillations on climatic surface variables in Turkey, Hydrological Processes, 19(6), 1185-1211.
  • Kutiel H., Türkes M., (2005), New Evidence for the role of the North Sea-Caspian pattern on the temperature and precipitation regimes in Continental Central, Geografiska Annaler. 87(4), 501-513.
  • Mallat S.G., (1989), A theory for multiresoluion signal decomposition: The wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 674-693.
  • Meyer Y., (1993), Wavelets Algorithms & Applications, Society for Industrial and Applied Mathematics, Philadelphia, 133ss.
  • Nalley D., Adamovski J., Khalil B., (2012), Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario, Journal of Hydrology, 475, 204-228.
  • Nourani V., Baghanam A.H., Adamowski J., Kişi Ö., (2014), Applications of hybrid wavelet–artificial intelligence models in hydrology: a review, Journal of Hydrology, 514, 358-377.
  • Partal T., (2012), Wavelet analysis and multi-scale characteristics of the runoff and precipitation series of the Aegean region (Turkey), International Journal of Climatology, 32, 108-120.
  • Philandras C., Nastos P., Kapsomenakis I. Repapis C., (2015), Climatology of upper air temperature in the Eastern Mediterranean region, Atmospheric Research, 152, 29-42.
  • Pisoft P., Kalvova J., Brazdil R., (2004), Cycles and trends in the Czech temperatures series using wavelet transform, International Journal of Climatology, 24,1661-1670.
  • Polonsky A.B., Bardin M.Y., Voskresenskaya E.N. (2007), Statistical characteristics of cyclones and anticyclones over the Black Sea in the second half of the 20th century, Physical Oceanography,17, 348–359.
  • Sagarika S., Kalra A., Ahmad S., (2015), Interconnection between oceanic-atmospheric indices and variability in the US streamflow, Journal of Hydrology, 525, 724–736.
  • Sezen C, Partal T., (2019), The impacts of Arctic oscillation and the North Sea Caspian pattern on the temperature and precipitation regime in Turkey, Meteorology and Atmospheric Physics, 131, 1677–1696.
  • Tamaddun K.A., Kalra A., Ahmad S., (2016), Wavelet analyses of western US streamflow with ENSO and PDO, Journal of Water and Climate Change, 8(1), 26–39.
  • Türkeş M, Erlat E., (2018), Variability and trends in record air temperature events of Turkey and their associations with atmospheric oscillations and anomalous circulation patterns, International Journal of Climatology, 38(14), 5182-5204.
  • Vazifehkhah S, Kahya E., (2018), Hydrological drought associations with extreme phases of the North Atlantic and Arctic Oscillations over Turkey and northern Iran, International journal of Climatology, 38(12), 4459-4475.
  • Voskresenskaya E.N., Maslova V.N., (2011), Winter-spring cyclonic variability in the Mediterranean-Black Sea region associated with global processes in the ocean-atmosphere system, Advances in Science and Research, 6, 237–243.
  • Ward P.J., Kummu M., Lall U., (2016), Flood frequencies and durations and their response to El Niño Southern Oscillation: Global analysis, Journal of Hydrology, 539, 358-378.
  • Yılmaz C.B., Demir V., Sevimli M.F., (2020), Karadeniz Yağışlarının Kuzey Atlantik Salnımı ile İlişkisi, Gazi Mühendislik Bilimleri Dergisi, 6(3), 248-254.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Emre Kebapçıoğlu 0000-0002-2042-966X

Turgay Partal 0000-0002-3779-441X

Yayımlanma Tarihi 14 Ocak 2022
Gönderilme Tarihi 7 Nisan 2021
Kabul Tarihi 4 Ağustos 2021
Yayımlandığı Sayı Yıl 2022Cilt: 8 Sayı: 1

Kaynak Göster

APA Kebapçıoğlu, E., & Partal, T. (2022). Küresel Atmosferik Salınımların Büyük Menderes ve Gediz Akarsularının Akımları Üzerindeki Etkisi. Doğal Afetler Ve Çevre Dergisi, 8(1), 1-13. https://doi.org/10.21324/dacd.910666
AMA Kebapçıoğlu E, Partal T. Küresel Atmosferik Salınımların Büyük Menderes ve Gediz Akarsularının Akımları Üzerindeki Etkisi. Doğ Afet Çev Derg. Ocak 2022;8(1):1-13. doi:10.21324/dacd.910666
Chicago Kebapçıoğlu, Emre, ve Turgay Partal. “Küresel Atmosferik Salınımların Büyük Menderes Ve Gediz Akarsularının Akımları Üzerindeki Etkisi”. Doğal Afetler Ve Çevre Dergisi 8, sy. 1 (Ocak 2022): 1-13. https://doi.org/10.21324/dacd.910666.
EndNote Kebapçıoğlu E, Partal T (01 Ocak 2022) Küresel Atmosferik Salınımların Büyük Menderes ve Gediz Akarsularının Akımları Üzerindeki Etkisi. Doğal Afetler ve Çevre Dergisi 8 1 1–13.
IEEE E. Kebapçıoğlu ve T. Partal, “Küresel Atmosferik Salınımların Büyük Menderes ve Gediz Akarsularının Akımları Üzerindeki Etkisi”, Doğ Afet Çev Derg, c. 8, sy. 1, ss. 1–13, 2022, doi: 10.21324/dacd.910666.
ISNAD Kebapçıoğlu, Emre - Partal, Turgay. “Küresel Atmosferik Salınımların Büyük Menderes Ve Gediz Akarsularının Akımları Üzerindeki Etkisi”. Doğal Afetler ve Çevre Dergisi 8/1 (Ocak 2022), 1-13. https://doi.org/10.21324/dacd.910666.
JAMA Kebapçıoğlu E, Partal T. Küresel Atmosferik Salınımların Büyük Menderes ve Gediz Akarsularının Akımları Üzerindeki Etkisi. Doğ Afet Çev Derg. 2022;8:1–13.
MLA Kebapçıoğlu, Emre ve Turgay Partal. “Küresel Atmosferik Salınımların Büyük Menderes Ve Gediz Akarsularının Akımları Üzerindeki Etkisi”. Doğal Afetler Ve Çevre Dergisi, c. 8, sy. 1, 2022, ss. 1-13, doi:10.21324/dacd.910666.
Vancouver Kebapçıoğlu E, Partal T. Küresel Atmosferik Salınımların Büyük Menderes ve Gediz Akarsularının Akımları Üzerindeki Etkisi. Doğ Afet Çev Derg. 2022;8(1):1-13.

Creative Commons License
Doğal Afetler ve Çevre Dergisi, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License ile lisanlanmıştır.