Araştırma Makalesi
BibTex RIS Kaynak Göster

Assessment of Halonitromethanes Formation Potentials Under Different Disinfection Scenarios in Low SUVA Water

Yıl 2022, Cilt: 8 Sayı: 2, 351 - 358, 30.07.2022
https://doi.org/10.21324/dacd.1061521

Öz

The main objective of this project is to investigate the formation of halonitromethanes, an emerging class of disinfection by-products (DBPs) identified in drinking waters in recent years, which are currently unregulated but highly toxic. Halonitromethanes formation potentials tests were investigated under five different disinfection conditions in Egirdir Lake with low specific ultraviolet absorbance (SUVA) value. The results showed that ozone/chlorine formed the highest halonitromethanes followed by in the order of ozone/chloramine and chlorine only. When chloramine or ozone were used alone, the halonitromethanes concentration was below the minimum detection limits. The highest halonitromethanes was determined 2.5 µg/L for ozone /chlorine scenario and the lowest halonitromethanes concentration was 1.7 µg/L in ozone /chlorine scenario. In the ozone/chlorine scenario, a dramatic decrease for halonitromethane formation was detected from spring to winter. Chloropicrin has been the only measurable halonitromethanes species. In the correlation analysis between halonitromethanes and water quality parameters, the highest correlation was found between halonitromethanes and dissolved organic nitrogen. Besides dissolved organic nitrogen, different organic/inorganic compounds and disinfectants also contribute to the formation of halonitromethanes. These results can be used to control the formation of N-DBPs in the disinfection of low SUVA waters.

Teşekkür

This study named “Assessment of Halonitromethanes Formation Potentials Based on Different Disinfection Scenarios in Source Water with Low SUVA Value” was produced from the master's thesis of Sebnem Genisoglu and was financially supported by the University of Suleyman Demirel Scientific Research Projects Coordination Unit with project number 4226-YL1-14.

Kaynakça

  • Abusallout I., (2019), Natural Sunlight Photodegradation of Halogenated Disinfection Byproducts in Water, Doctor of Philosophy (PhD) Thesis, South Dakota State University, The USA.
  • APHA, (2005), Standard Methods for the Examination of Water and Wastewater, 21st Edition, American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC.
  • Carter R.A.A., Liew D.S., West N., Heitz A., Joll C.A., (2019), Simultaneous analysis of haloacetonitriles, haloacetamides and halonitromethanes in chlorinated waters by gas chromatography mass spectrometry, Chemosphere, 220, 314-323.
  • Chang H., Chen C., Wang G., (2013), Characteristics of C-, N-DBPs formation from nitrogen-enriched dissolved organic matter in raw water and treated wastewater effluent, Water Research, 47(8), 2729–2741.
  • Chu W., Gao N., Krasner S.W., Templeton M.R., Yin D., (2012), Formation of halogenated C-, N-DBPs from chlor(am)ination and UV irradiation of tyrosine in drinking water, Environmental Pollution, 161, 8–14.
  • Dong H., Qiang Z., Lian J., Qu J., (2017), Degradation of nitro-based pharmaceuticals by UV photolysis: Kinetics and simultaneous reduction on halonitromethanes formation potential, Water Research, 119, 83-90.
  • Fang J.Y., Ling L., Shang C., (2013), Kinetics and mechanisms of pH-dependent degradation of halonitromethanes by UV photolysis, Water Research, 47(3), 1257-1266.
  • Goslan E.H., Krasner S.W., Bower M., Rocks S.A., Holmes P., Levy L.S., Parsons S.A., (2009), A comparison of disinfection by-products found in chlorinated and chloraminated drinking waters in Scotland, Water Research, 43, 4698–4706.
  • Hermjakob H., Montecchipalazzi L., Bader G., Wojcik J., Salwinski L., Ceol A., Moore S., Orchard S., Sarkans U., Mering C.V., (2013), Enhanced N-nitrosamine formation in pool water by UV irradiation of chlorinated secondary amines in the presence of monochloramine, Water Research, 47(1), 79–90.
  • Hoigné J., Bader H., (1988), The formation of trichloronitromethane (chloropicrin) and chloroform in a combined ozone/chlorination treatment of drinking water, Water Research, 22, 313–319.
  • Hong H., Qian L., Xiao Z., Zhang J., Chen J., Lin H., Yu H., Shen L., Liang Y., (2015), Effect of nitrite on the formation of halonitromethanes during chlorination of organic matter from different origin, Journal of Hydrology, 531, 802–809.
  • Hu J., Song H., Addison J.W., Karanfil T., (2010), Halonitromethane formation potentials in drinking waters, Water Research, 44, 105–114.
  • Hu J., Song H., Karanfil T., (2010), Comparative analysis of halonitromethane and trihalomethane formation and speciation in drinking water: the effects of disinfectants, pH, bromide, and nitrite, Environmental Science & Technology, 44, 794–799.
  • Hua G., Reckhow D.A., (2007), Comparison of disinfection byproduct formation from chlorine and alternative disinfectants, Water Research, 41, 1667–1678.
  • Hua G., Reckhow D.A., Abusallout I., (2015), Correlation between SUVA and DBP formation during chlorination and chloramine of NOM fractions from different sources, Chemosphere, 130, 82–89.
  • Kaplan-Bekaroglu Ş.Ş., (2010), Removal of natural organic matter using various surface modified adsorbents, PhD Thesis (Printed), Suleyman Demirel University, Isparta, Turkey.
  • Kim D., Amy G.L., Karanfil T., (2015), Disinfection by-product formation during seawater desalination: a review, Water Research, 81, 343–345.
  • Krasner S.W., (2009), The formation and control of emerging disinfection by-products of health concern, Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 13, 4077-4095.
  • Lee W., Westerhoff P., Croue´ J.P., (2007), Dissolved organic nitrogen as a precursor for chloroform, dichloroacetonitrile, N-nitrosodimethylamine, and trichloro-nitromethane, Environmental Science & Technology, 41(15), 5485–5490.
  • Li Y., Jiang J., Li W., Zhu X., Zhang X., Jiang F., (2020), Volatile DBPs contributed marginally to the developmental toxicity of drinking water DBP mixtures against Platynereis dumerilii, Chemosphere, 252, 126611.
  • Marsa A., Cortes C., Teixido E., Hernandez A., Marcos R., (2017), In vitro studies on the tumorigenic potential of the halonitromethanes trichloronitromethane and bromonitromethane, Toxicology in Vitro, 45, 72–80.
  • Merlet N., Thibaud H., Dore M., (1985), Chloropicrin formation during oxidative treatments in the preparation of drinking water, Science Total Environment, 47, 223–228.
  • Montesinos I., Cardador M.J., Gallego M., (2011), Determination of halonitromethanes in treated water, Journal of Chromatography A, 1218, 2497-2504.
  • Richardson S.D., Thruston Jr. A.D., Caughran T.V., Chen P.H., Collette T.W., Floyd T.L., Schenck K.M., Lykins Jr. B.W., Sun G., Majetich G., (1999), Identification of new ozone disinfection byproducts in drinking water, Environmental Science & Technology, 33, 3368–3377.
  • Shang X.L., Yong-Mei L.I., (2010), Formation and removal of typical N-DBPs—A review, Environmental Science & Technology (China), 33(4), 60–64.
  • Srivastav A.L., Patel N., Chaudhary V.K., (2020), Disinfection by-products in drinking water: Occurrence, toxicity and abatement, Environmental Pollution, 267, 115-474.
  • USEPA, (1995), Method 551.1: Determination of Chlorination Disinfection Byproducts, Chlorinated Solvents, and Halogenated Pesticides/Herbicides in Drinking Water by Liquid-Liquid Extraction and Gas Chromatography with Electron-Capture Detection, Revision 1.0. Cincinnati, OH.
  • von Gunten U., (2003), Ozone of drinking water: part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine, Water Research, 37, 1469–1487.
  • Wang J., Li Z., Hu S., Ma J., Gong T., Xian Q., (2021), Formation and influence factors of halonitromethanes in chlorination of nitro-aromatic compounds, Chemosphere, 278, 130-497.
  • Westerhoff P., Mash H., (2002), Dissolved organic nitrogen in drinking water supplies: a review, Journal of Water Supply: Research and Technology—Aqua, 51(8), 415-448.
  • WHO, (2018), Developing drinking-water quality regulations and standards: general guidance with a special focus on countries with limited resources, World Health Organization, Geneva, 58ss.
  • Zhang S., Lin T., Chen H., Xu H., Chen W., Tao H., (2020), Precursors of typical nitrogenous disinfection byproducts: Characteristics, removal, and toxicity formation potential, Science of the Total Environment, 742, 140-566.
  • Zhang Y., Lu J., Yi P., Zhang Y., Wang Q., (2019). Trichloronitromethane formation from amino acids by preozone-chlorination: The effects of ozone dosage, reaction time, pH, and nitrite, Separation and Purification Technology, 209, 145–151.

Düşük SUVA Değerine Sahip Kaynak Sularında Farklı Dezenfeksiyon Senaryolarında Halonitrometan Oluşum Potansiyellerinin Değerlendirilmesi

Yıl 2022, Cilt: 8 Sayı: 2, 351 - 358, 30.07.2022
https://doi.org/10.21324/dacd.1061521

Öz

Su dağıtım sistemlerinde tespit edilen tüm kanserojen dezenfeksiyon yan ürünleri arasında, halonitrometanlar diğerlerine nazaran en toksik sınıflardan biridir. Bu araştırmanın temel amacı, düşük SUVA'ya sahip içme suyu kaynaklarında halonitrometan oluşumunun sistematik araştırılmasıdır. Eğirdir Gölü'nde beş farklı dezenfeksiyon senaryolarında halonitrometan oluşum potansiyelleri testleri gerçekleştirilmiştir. Ozon + klor senaryosunun en yüksek halonitrometan oluşumuna sebep olduğu, müteakip ozon + kloramin/klorun oluşturduğu gözlenmiştir. Sadece Kloramin veya ozon senaryolarında, halonitrometan konsantrasyonu genellikle minimum tespit limitlerinin altında kalmıştır. Ozon + klor senaryosunda en yüksek halonitrometan konsantrasyonu 2.5 µg/L olarak belirlenmiştir. Ozon + klor senaryosunda tespit edilen en düşük halonitrometan konsantrasyonu ise 1.7 µg/L’dir. Ozon + klor senaryosunda halonitrometan konsantrasyonlarında ilkbahardan kışa doğru kayda değer bir düşüş tespit edilmiştir. Kloropikrin, ölçülebilir tek halonitrometan türü olmuştur. Halonitrometanlar ile su kalitesi parametreleri arasındaki analizlerde en yüksek korelasyon halonitrometanlar ile çözünmüş organik azot arasında bulunmuştur. Bununla birlikte, farklı doğal organik maddeler: inorganik maddeler veya dezenfektanlar da halonitrometan oluşumuna katkıda bulunmaktadır. Bu sonuçlar, düşük SUVA’ya sahip suların dezenfeksiyonunda azotlu dezenfeksiyon yan ürünlerinin (A-DYÜ) oluşumunu kontrol etmek için kullanılabilir.

Kaynakça

  • Abusallout I., (2019), Natural Sunlight Photodegradation of Halogenated Disinfection Byproducts in Water, Doctor of Philosophy (PhD) Thesis, South Dakota State University, The USA.
  • APHA, (2005), Standard Methods for the Examination of Water and Wastewater, 21st Edition, American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC.
  • Carter R.A.A., Liew D.S., West N., Heitz A., Joll C.A., (2019), Simultaneous analysis of haloacetonitriles, haloacetamides and halonitromethanes in chlorinated waters by gas chromatography mass spectrometry, Chemosphere, 220, 314-323.
  • Chang H., Chen C., Wang G., (2013), Characteristics of C-, N-DBPs formation from nitrogen-enriched dissolved organic matter in raw water and treated wastewater effluent, Water Research, 47(8), 2729–2741.
  • Chu W., Gao N., Krasner S.W., Templeton M.R., Yin D., (2012), Formation of halogenated C-, N-DBPs from chlor(am)ination and UV irradiation of tyrosine in drinking water, Environmental Pollution, 161, 8–14.
  • Dong H., Qiang Z., Lian J., Qu J., (2017), Degradation of nitro-based pharmaceuticals by UV photolysis: Kinetics and simultaneous reduction on halonitromethanes formation potential, Water Research, 119, 83-90.
  • Fang J.Y., Ling L., Shang C., (2013), Kinetics and mechanisms of pH-dependent degradation of halonitromethanes by UV photolysis, Water Research, 47(3), 1257-1266.
  • Goslan E.H., Krasner S.W., Bower M., Rocks S.A., Holmes P., Levy L.S., Parsons S.A., (2009), A comparison of disinfection by-products found in chlorinated and chloraminated drinking waters in Scotland, Water Research, 43, 4698–4706.
  • Hermjakob H., Montecchipalazzi L., Bader G., Wojcik J., Salwinski L., Ceol A., Moore S., Orchard S., Sarkans U., Mering C.V., (2013), Enhanced N-nitrosamine formation in pool water by UV irradiation of chlorinated secondary amines in the presence of monochloramine, Water Research, 47(1), 79–90.
  • Hoigné J., Bader H., (1988), The formation of trichloronitromethane (chloropicrin) and chloroform in a combined ozone/chlorination treatment of drinking water, Water Research, 22, 313–319.
  • Hong H., Qian L., Xiao Z., Zhang J., Chen J., Lin H., Yu H., Shen L., Liang Y., (2015), Effect of nitrite on the formation of halonitromethanes during chlorination of organic matter from different origin, Journal of Hydrology, 531, 802–809.
  • Hu J., Song H., Addison J.W., Karanfil T., (2010), Halonitromethane formation potentials in drinking waters, Water Research, 44, 105–114.
  • Hu J., Song H., Karanfil T., (2010), Comparative analysis of halonitromethane and trihalomethane formation and speciation in drinking water: the effects of disinfectants, pH, bromide, and nitrite, Environmental Science & Technology, 44, 794–799.
  • Hua G., Reckhow D.A., (2007), Comparison of disinfection byproduct formation from chlorine and alternative disinfectants, Water Research, 41, 1667–1678.
  • Hua G., Reckhow D.A., Abusallout I., (2015), Correlation between SUVA and DBP formation during chlorination and chloramine of NOM fractions from different sources, Chemosphere, 130, 82–89.
  • Kaplan-Bekaroglu Ş.Ş., (2010), Removal of natural organic matter using various surface modified adsorbents, PhD Thesis (Printed), Suleyman Demirel University, Isparta, Turkey.
  • Kim D., Amy G.L., Karanfil T., (2015), Disinfection by-product formation during seawater desalination: a review, Water Research, 81, 343–345.
  • Krasner S.W., (2009), The formation and control of emerging disinfection by-products of health concern, Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 13, 4077-4095.
  • Lee W., Westerhoff P., Croue´ J.P., (2007), Dissolved organic nitrogen as a precursor for chloroform, dichloroacetonitrile, N-nitrosodimethylamine, and trichloro-nitromethane, Environmental Science & Technology, 41(15), 5485–5490.
  • Li Y., Jiang J., Li W., Zhu X., Zhang X., Jiang F., (2020), Volatile DBPs contributed marginally to the developmental toxicity of drinking water DBP mixtures against Platynereis dumerilii, Chemosphere, 252, 126611.
  • Marsa A., Cortes C., Teixido E., Hernandez A., Marcos R., (2017), In vitro studies on the tumorigenic potential of the halonitromethanes trichloronitromethane and bromonitromethane, Toxicology in Vitro, 45, 72–80.
  • Merlet N., Thibaud H., Dore M., (1985), Chloropicrin formation during oxidative treatments in the preparation of drinking water, Science Total Environment, 47, 223–228.
  • Montesinos I., Cardador M.J., Gallego M., (2011), Determination of halonitromethanes in treated water, Journal of Chromatography A, 1218, 2497-2504.
  • Richardson S.D., Thruston Jr. A.D., Caughran T.V., Chen P.H., Collette T.W., Floyd T.L., Schenck K.M., Lykins Jr. B.W., Sun G., Majetich G., (1999), Identification of new ozone disinfection byproducts in drinking water, Environmental Science & Technology, 33, 3368–3377.
  • Shang X.L., Yong-Mei L.I., (2010), Formation and removal of typical N-DBPs—A review, Environmental Science & Technology (China), 33(4), 60–64.
  • Srivastav A.L., Patel N., Chaudhary V.K., (2020), Disinfection by-products in drinking water: Occurrence, toxicity and abatement, Environmental Pollution, 267, 115-474.
  • USEPA, (1995), Method 551.1: Determination of Chlorination Disinfection Byproducts, Chlorinated Solvents, and Halogenated Pesticides/Herbicides in Drinking Water by Liquid-Liquid Extraction and Gas Chromatography with Electron-Capture Detection, Revision 1.0. Cincinnati, OH.
  • von Gunten U., (2003), Ozone of drinking water: part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine, Water Research, 37, 1469–1487.
  • Wang J., Li Z., Hu S., Ma J., Gong T., Xian Q., (2021), Formation and influence factors of halonitromethanes in chlorination of nitro-aromatic compounds, Chemosphere, 278, 130-497.
  • Westerhoff P., Mash H., (2002), Dissolved organic nitrogen in drinking water supplies: a review, Journal of Water Supply: Research and Technology—Aqua, 51(8), 415-448.
  • WHO, (2018), Developing drinking-water quality regulations and standards: general guidance with a special focus on countries with limited resources, World Health Organization, Geneva, 58ss.
  • Zhang S., Lin T., Chen H., Xu H., Chen W., Tao H., (2020), Precursors of typical nitrogenous disinfection byproducts: Characteristics, removal, and toxicity formation potential, Science of the Total Environment, 742, 140-566.
  • Zhang Y., Lu J., Yi P., Zhang Y., Wang Q., (2019). Trichloronitromethane formation from amino acids by preozone-chlorination: The effects of ozone dosage, reaction time, pH, and nitrite, Separation and Purification Technology, 209, 145–151.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Şehnaz Şule Kaplan Bekaroğlu 0000-0003-0917-7219

Sebnem Genısoglu 0000-0002-4264-036X

Cihan Özgür 0000-0001-6085-1585

Yayımlanma Tarihi 30 Temmuz 2022
Gönderilme Tarihi 22 Ocak 2022
Kabul Tarihi 21 Nisan 2022
Yayımlandığı Sayı Yıl 2022Cilt: 8 Sayı: 2

Kaynak Göster

APA Kaplan Bekaroğlu, Ş. Ş., Genısoglu, S., & Özgür, C. (2022). Assessment of Halonitromethanes Formation Potentials Under Different Disinfection Scenarios in Low SUVA Water. Doğal Afetler Ve Çevre Dergisi, 8(2), 351-358. https://doi.org/10.21324/dacd.1061521
AMA Kaplan Bekaroğlu ŞŞ, Genısoglu S, Özgür C. Assessment of Halonitromethanes Formation Potentials Under Different Disinfection Scenarios in Low SUVA Water. Doğ Afet Çev Derg. Temmuz 2022;8(2):351-358. doi:10.21324/dacd.1061521
Chicago Kaplan Bekaroğlu, Şehnaz Şule, Sebnem Genısoglu, ve Cihan Özgür. “Assessment of Halonitromethanes Formation Potentials Under Different Disinfection Scenarios in Low SUVA Water”. Doğal Afetler Ve Çevre Dergisi 8, sy. 2 (Temmuz 2022): 351-58. https://doi.org/10.21324/dacd.1061521.
EndNote Kaplan Bekaroğlu ŞŞ, Genısoglu S, Özgür C (01 Temmuz 2022) Assessment of Halonitromethanes Formation Potentials Under Different Disinfection Scenarios in Low SUVA Water. Doğal Afetler ve Çevre Dergisi 8 2 351–358.
IEEE Ş. Ş. Kaplan Bekaroğlu, S. Genısoglu, ve C. Özgür, “Assessment of Halonitromethanes Formation Potentials Under Different Disinfection Scenarios in Low SUVA Water”, Doğ Afet Çev Derg, c. 8, sy. 2, ss. 351–358, 2022, doi: 10.21324/dacd.1061521.
ISNAD Kaplan Bekaroğlu, Şehnaz Şule vd. “Assessment of Halonitromethanes Formation Potentials Under Different Disinfection Scenarios in Low SUVA Water”. Doğal Afetler ve Çevre Dergisi 8/2 (Temmuz 2022), 351-358. https://doi.org/10.21324/dacd.1061521.
JAMA Kaplan Bekaroğlu ŞŞ, Genısoglu S, Özgür C. Assessment of Halonitromethanes Formation Potentials Under Different Disinfection Scenarios in Low SUVA Water. Doğ Afet Çev Derg. 2022;8:351–358.
MLA Kaplan Bekaroğlu, Şehnaz Şule vd. “Assessment of Halonitromethanes Formation Potentials Under Different Disinfection Scenarios in Low SUVA Water”. Doğal Afetler Ve Çevre Dergisi, c. 8, sy. 2, 2022, ss. 351-8, doi:10.21324/dacd.1061521.
Vancouver Kaplan Bekaroğlu ŞŞ, Genısoglu S, Özgür C. Assessment of Halonitromethanes Formation Potentials Under Different Disinfection Scenarios in Low SUVA Water. Doğ Afet Çev Derg. 2022;8(2):351-8.

Creative Commons License
Doğal Afetler ve Çevre Dergisi, Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License ile lisanlanmıştır.